Overview
Integrated foundation year
The integrated foundation year is distinctive in the way students are prepared with the specific knowledge and skills required to progress onto the BEng programme at LSBU. The foundation year is designed to respond to the differing needs of students, particularly those from local areas in accordance with the policies and practice of equal opportunities.
The content is designed to help students to develop academic, study and practical skills needed at foundation level, including a combination of core engineering modules associated with the provision of study and laboratory skills, mathematics, engineering science and scientific principles and with the specialist engineering subject enabling students to progress to BSc and BEng courses offered by the Division of Engineering they wish to pursue.
Why Electrical and Electronic Engineering at LSBU?
- trophy
- 4th in London for Student Satisfaction for Electrical and Electronic Engineering (Complete University Guide by subject, 2025).
- laptop
- Top 10 in the UK for Engineering teaching (National Student Survey 2023).
- puzzle piece
- From AI machine learning boot camp to silent film processing, there is a range of extracurricular activities for Engineering students to get involved in.
ModeFull-time | Duration5 years | Start dateSeptember | Application codeH75F | Application method UCAS |
ModeFull-time (Sandwich) | Duration5 years | Start dateSeptember | Application codeH75F | Application method UCAS |
Our integrated foundation year course offers an extra year to prepare you for study at degree-level. After successfully completing the foundation year you can progress straight to the BEng (Hons) Electronic and Computer Systems Engineering.
Location
London South Bank University student union is located at 103 Borough Rd, London SE1 0AA.
If you are visiting our Southwark Campus, you may wish to use our downloadable campus map (PNG File 466 KB). For information on accessibility, see our DisabledGo access guides. See our location page for more details.
Entry Level Requirements
Want to start your course this September? call 0800 923 8888 for entry requirements.
- 64 UCAS points. Visit UCAS for guidance on the tariff.
- GCSE Maths grade C or above or equivalent (reformed GCSEs grade 4 or above).
If you do not meet the entry criteria above we also review any previous skills, knowledge or experience you have gained outside of your education and are happy to talk through any extenuating circumstances you feel relevant.
Choose your country
Select country here:
Missing English and Maths qualifications?
If you do not have the required English and Maths qualifications needed to satisfy the entry requirements for this programme, we have courses available at our partner College that you can take to upskill in these areas. Find out more at South Bank College.
Advanced entry
If you have already completed some studies at another university, we may be able to consider you for advanced entry. Please see our advanced entry page for more information.
United Kingdom
£9535
Tuition fees for home students
International
£15500
Tuition fees for international students
Tuition fees are subject to annual inflationary increases. Find out more about tuition fees for Undergraduate or Postgraduate courses.
-
Full-time
full-time
BEng (Hons) Electronic and Computer Systems Engineering (with Foundation Year) (FT) - Year 1
UK fee: £9535 International fee: £15500 AOS/LSBU code: 5918 Session code: 1FS00 Total course fee: * The full amount is subject to fee increases, the total shown below is based on current fees.
UK (excluding any optional years): £38140 UK (including any optional years): £38140 International (excluding any optional years): £62000 International (including any optional years): £62000 BEng (Hons) Electronic and Computer Systems Engineering (with Foundation Year) (FT) - Year 2
UK fee: £9535 International fee: £15500 AOS/LSBU code: 5918 Session code: 2FS00 Total course fee: * The full amount is subject to fee increases, the total shown below is based on current fees.
UK (excluding any optional years): £38140 UK (including any optional years): £38140 International (excluding any optional years): £62000 International (including any optional years): £62000 BEng (Hons) Electronic and Computer Systems Engineering (with Foundation Year) (FT) - Year 3
UK fee: £9535 International fee: £15500 AOS/LSBU code: 5918 Session code: 3FS00 Total course fee: * The full amount is subject to fee increases, the total shown below is based on current fees.
UK (excluding any optional years): £38140 UK (including any optional years): £38140 International (excluding any optional years): £62000 International (including any optional years): £62000 BEng (Hons) Electronic and Computer Systems Engineering (with Foundation Year) (FT) - Year 4
UK fee: £0 International fee: £0 AOS/LSBU code: 5918 Session code: 4FS00 Total course fee: * The full amount is subject to fee increases, the total shown below is based on current fees.
UK (excluding any optional years): £38140 UK (including any optional years): £38140 International (excluding any optional years): £62000 International (including any optional years): £62000 BEng (Hons) Electronic and Computer Systems Engineering (with Foundation Year) (FT) - Year 5
UK fee: £9535 International fee: £15500 AOS/LSBU code: 5918 Session code: 5FS00 Total course fee: * The full amount is subject to fee increases, the total shown below is based on current fees.
UK (excluding any optional years): £38140 UK (including any optional years): £38140 International (excluding any optional years): £62000 International (including any optional years): £62000
For more information, including how and when to pay, see our fees and funding section for undergraduate students.
Please check your fee status and whether you are considered a Home, EU or International student for fee-paying purposes and for our regulatory returns, by reading the UKCISA regulations.
See our Tuition Fees Regulations (PDF File 391 KB) and Refund Policy (PDF File 775 KB).
Possible fee changes
The University reserves the right to increase its fees in line with changes to legislation, regulation and any government guidance or decisions.
The fees for international students are reviewed annually and the University reserves the right to increase the tuition fees in line with the RPIX measure of inflation up to 4 per cent.
Scholarships
We offer several types of fee reduction through our scholarships and bursaries. Find the full list and other useful information on our scholarships page.
International students
The course is not currently open to international students.
International (non Home) applicants should follow our international how to apply guide.
Home
Mode Full-time | Duration 5 years | Start date September | Application code H75F | Application method UCAS |
Mode Full-time (Sandwich) | Duration 5 years | Start date September | Application code H75F | Application method UCAS |
Accommodation
Once we have made you an offer, you can apply for accommodation. You can rent from LSBU and you’ll deal directly with the university, not third party providers. That means we can guarantee you options to suit all budgets, with clear tenancy agreements and all-inclusive rents that include insurance for your personal belongings, internet access in each bedroom and on-site laundry facilities.
Or, if you’d rather rent privately, we can give you a list of landlords – just ask our Accommodation Service.
Read more about applying for accommodation at LSBU.
Finance
You don't need to wait for a confirmed place on a course to start applying for student finance. Read how to pay your fees as an undergraduate student.
Prepare to start
Applicant events
After you’ve received your offer we’ll send you emails about events we run to help you prepare for your course.
Enrolment
Before you start your course we’ll send you information on what you’ll need to do before you arrive and during your first few days on campus. You can read about the process on our Enrolment pages.
On completion of this course, you'll be well equipped with a knowledge of electronics systems’ design techniques and their application in areas such as control, telecommunications, and consumer products.
Foundation Year
Semester 1
- Applied Mathematics
This module provides you with the mathematical knowledge and skills to support study of BEng programmes. The module covers basic algebra, liner and simultaneous equations, quadratic equations, and graphical methods. - Scientific Principles for Engineering
The module will cover the principles of chemistry and physics, at a level between GCSE and A-level. It will introduce you to a range of skills required in both chemical and physical sciences, as appropriate to your intended programme of study. - Study & Laboratory Skills
The module introduces study skills considering both individual and team-working skills. It will also introduce you to your own Personal Development Planning process. This module will enable you develop and use appropriate safe working practices in the workshop or laboratory environment specific to your subject/discipline. - Mathematics for Engineering
This module will provide you with the mathematical knowledge and skill necessary for transition to level 4 study of engineering subjects. You’ll attend lectures and tutorial where worked exercises will be undertaken. Where possible, the statistical content will introduce the use of statistical packages and the presentation of real-life data sets - Engineering Science
This is an introductory module to engineering design. You’ll be taught the basic design process and apply this to a simple product. You’ll also be introduced to the workshop and simple model making tools. You’ll learn basic drawings skills. - Practical Electronics
This module covers an introduction to practical electronics. Laboratory bench work explores the concepts of simple series resistor networks, potential divider, internal resistance, power transfer, Kirchoff’s law, Wheatstone Bridge, diode characteristics and operational amplifiers. The module concludes with a circuit design project including simple IC circuit design, software simulation and assembly on board.
Semester 2
Year 1
- Engineering, mathematics and modelling
This module consolidates your knowledge of a broad range of mathematical methods and techniques appropriate for engineering courses, and enables you to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. - Object-orientated programming C++
This module aims to provide students with intermediate proficiency in the use of the C++ programming languages and further to write efficient OOP programs making use of data classes. Assessment methods: 100% coursework. This module introduces the syntaxes and semantics of programming language C++ and teaches students the intellectual knowledge in programming principles and programming skills with Object Oriented Programming (OOP) techniques. The practical skills include C++ program design with OOP and the use of the compiling tools for editing, compiling, linking and executing programs in workshops. After learning this module, students can pursue other software engineering and advanced programming courses and use OOP techniques to solve simple engineering problems. This module aims to provide students with intermediate proficiency in the use of the C++ programming languages and further to write efficient OOP programs making use of data classes. Assessment methods: 100% coursework. - Electrical circuit analysis
This module is developed to provide students the knowledge of analysing DC and AC electrical circuits. It provides cornerstone skills required in the fields of electrical and electronic engineering, computer systems engineering and mechanical engineering. The course content covers electrical units, measuring instruments, series/parallel DC circuit analysis, storage elements analysis, AC waveforms, R, L, C, RL and RLC AC circuits with phasor analysis, electromagnetism, equivalent circuit of single phase transformer and three phase circuits including Star/Delta winding configurations and analysing the power in the balanced star/delta connected loads with symmetrical three phase supplies. Assessment methods: 50% coursework, 50% exam. - Electronic principles
This module will help you develop your understanding of essential scientific principles for the study of engineering to degree level. It's designed to be accessible to students with a range of prior science specialisation. The module comprises two blocks of study. These will introduce the principles of measurement systems and units, thermal physics and mechanical and electrical principles. Assessment methods: 40% coursework, 60% exam. - Digital logic design
The module covers the fundamental theory for the design of and the practical uses of digital electronics in the two design domains of combinational logic design and sequential logic design. The process of developing digital logic design is modelled using Hardware Description Languages (HDL). The module studies hardware devices to build circuits for digital logic designs and tools to support the design and analysis of those circuits; these include standard logic gates and Field Programmable Gate Arrays (FPGA). The module covers common design blocks such as adders, encoders, comparators, data selectors, flip-flops, counters, registers. The module shows the design and implementation of full digital systems typically based around finite state machines from description in HDL to implementation using FPGA technology. Assessment methods: 50% coursework, 50% exam. - Design and practice
This module will cover material design activities, team work, creative problem-solving, project management, sustainable development principles, personal development planning, report writing communication, Computer-Aided Design (CAD), employability and transferable skills. It's also a work-based module for part-time students, utilising the Virtual Learning Environment (VLE) to provide supporting teaching material and assessments. Assessment method: 100% coursework.
Year 2
- Discrete mathematics, data structures and algorithms
This module introduces the syntaxes and semantics of programming language Java and teaches students the intellectual knowledge in programming principles and programming skills with Object-Oriented Programming (OOP) techniques. It emphasises in Object-oriented problem solving, design, and programming and introduces the data structures and computing algorithms including algorithm design and complexity. Further, this module introduces Discrete Mathematics and structures including concepts of algorithms, induction, recursion, proofs, topics from logic, set theory, combinatorics, graph theory. The practical skills include program design, algorithms and data structures expressed using the Java programming language and further the use of Mathematical Software for Discrete Mathematics. Assessment methods: 50% coursework, 50% exam. - Computer architecture and operating systems
This module consists of two parts. The first part, Computer Architecture, provides the basic engineering foundations of detailed design and implementation of a digital computer system; designs for the CPU, I/O subsystems, and memory organizations; ALU design and computer arithmetic. Bus, memory organization and interrupt structures, control function implementation, pipelining, performance measurement and further Computer Organisation topics. The second part, Operating Systems, is designed to teach students about the role that the operating system has in computing. It also considers the applications in systems such as distributed, multimedia systems and the role that the OS has in supporting the functioning of these. Students will view the operating system from several vantage points. Assessment methods: 40% coursework, 60% exam. - Data communications and computer networks
This module concentrates on teaching students to understand the basics of data communications and networking, and the protocols used in the Internet in particular by using the protocol layering of the Internet and TCP/IP protocol suite. It starts with introducing data communications and defines their components and the types of data exchanged, and then moves on to introduces networks and defines their criteria and structures, discusses different types of networks and finally to discuss the internet’s architecture and protocols as well as other network architectures and wireless communication principles. The module further concentrates on the nature, special problems and current trends towards universal presence of mobile computing. Assessment methods: 40% coursework, 60% exam. - Analogue electronics
This module develops advanced techniques in analogue electronic design covering discrete (BJT / FET) and opamp related circuitry design, simulation, prototyping and testing. The aim of this module is to develop broad knowledge and experience in analogue circuit design from first principles and using SPICE related tools. Assessment methods: 50% coursework, 50% exam. - Embedded software design
This module concentrates on teaching students to understand the basics of embedded systems hardware and software, and to develop the techniques in data acquisition and manipulation required for instrumentation and control applications. Embedded systems hardware and software design for rapid electronic prototyping will be covered. Further, it will solidify lectures with experimental assignment projects based on Arduino microcontroller kits. Specifically, the module will focus on practical interfacing, coding (in C/C++), signal acquisition, processing and display. There will be an independent open-brief project in the last part of the module intended to test the student’s embedded systems design and problem solving skills. Assessment methods: 100% coursework. - Professional practice and team design project
This is a skills-based module developing students' understanding of the design process within engineering, including factors that need to be taken into account in identifying and meeting requirements for new products, i.e. outcomes of processes; working within Regulatory, professional and Standards requirements; developing practical skills; working as part of a team; handling information; project planning and management; and report-writing and presentation skills. Assessment methods: 100% coursework.
Year 3
- Optional placement year
Year 4
- Computer systems and software engineering
This module covers computer systems from database system to advance computer Architectures. It provides a co-ordinated and consistent coverage of theory, design and development of database systems. Then it focuses to the development of modern computer architectures for servers, workstations, hand-held devices, signal processing and embedded systems. Emphasis is given to design approaches and applications of Data-Level Parallelism in Vector, SIMD, and GPU Architectures. This module also provides students with a theoretical understanding and practical experience in software engineering. The module concentrates on the whole life-cycle of a software product, including: requirement analysis, software architecture and design, implementation, quality assurance, maintenance activities. Assessment methods: 50% coursework, 50% exam. - Cyber security and cryptography
This module provides a thorough discussion on cybersecurity and cryptography. It covers thoroughly computer security, network security, information security and mobile security. It discusses critical network security techniques, including the use of firewalls, encryption, intrusion detection, and enterprise-wide security policies. Network security is a major concern when designing and maintaining modern networks, which typically use open protocols and connect to public networks such as the Internet. Cryptographic algorithms in network protocols and network applications as well as the security of computers against intruders (e.g., hackers) and malicious software (e.g., viruses) are examined. Assessment methods: 40% coursework, 60% exam. - Artificial intelligence and signal processing
This module focuses on the signal processing in intelligent systems applications and consists of two parts. The first part, Artificial Intelligence, covers the history and contemporary development of artificial intelligence systems and looks forward to likely near-future developments. It will cover all the major techniques of problem description, knowledge representation and data searching that represent the current toolkit for developing intelligent applications. The second part, Signal Processing, encompass the following: need for and tradeoffs made when sampling and quantizing a signal, linear, time-invariant system properties, frequency as an analysis domain complementary to time, filter design and implementation, control system properties and applications. Assessment methods: 40% coursework, 60% exam. - Embedded systems and the Internet of Things
This module presents the nature and characteristics of embedded systems and the Internet of Things (IoT). It presents techniques for embedded applications, parallel input and output, serial communication, interfacing, interrupt handling, applications involving data acquisition, control, sensors, and actuators, embedded microcontrollers, implementation strategies for complex embedded systems. It is discussed advanced challenges in embedded systems design using contemporary practice; interrupt-driven, reactive, real-time, object-oriented and distributed client/server embedded systems. It is further discussed how IoT connects devices and various systems aiming to understand that it is a network of multiple connected physical objects, the things, involving myriad of applications. Assessment methods: 40% coursework, 60% exam. - BEng project
The individual major project requires students to plan, execute, review and report upon a major piece of technical work directly related to their degree discipline. In this regard, it provides students with the opportunity to develop a high degree of subject specific expertise. This module differentiates from others on the course taken due to the high degree of autonomous study expected. This flexibility should be seen as an opportunity to explore new areas of interest and to acquire new and often unexpected skills. The work undertaken within the project will require students to develop their own methodologies in advance of presenting solutions to the studied problem. Assessment methods: 100% coursework
Careers
Employability Service
At LSBU, we want to set you up for a successful career. During your studies – and for two years after you graduate – you’ll have access to our Employability Service, which includes:
- An online board where you can see a wide range of placements: part-time, full-time or voluntary. You can also drop in to see our Job Shop advisers, who are always available to help you take the next step in your search.
- Our Careers Gym offering group workshops on CVs, interview techniques and finding work experience, as well as regular presentations from employers across a range of sectors.
Our Student Enterprise team can also help you start your own business and develop valuable entrepreneurial skills.
With computers now an essential part of our lives, the demand and opportunities for those who can design computer hardware and develop software applications, manage and service computer systems is only going to continue to grow. Our societies and utilities are driven and controlled by electronic and computer-based systems that could not function without large, professional hardware and software systems - put simply the world cannot function without computers.
Electronic and computer systems engineers work in most industries, including computing and computer programming, automobile, aerospace, telecommunications, networking and network security power production, manufacturing, transport, defence and electronics, embedded systems, health and medicine, research and development, educational sectors. You could design high-tech devices ranging from tiny integrated-circuit chips, to powerful systems that utilise those chips and efficient telecommunication systems.
Likely jobs for graduates include computer network administration under Windows and Unix/Linux, as well as software engineering and design using Java and C++. You could also work independently as a developer, tester or evaluator of any kind of hardware and software application. You'll be able to develop operating systems, compilers, computer games, business applications, computer programs, analyse data and constructing and managing computer systems. In short, you’ll be highly employable in a wide variety of sectors.
LSBU has an enviable reputation for employability and entrepreneurship. Our graduates find opportunities across the world and make an impact wherever they go. The combination of Engineering and LSBU’s focus on high quality teaching and skills development with a vocational drive is key to the success of our graduates. Study with us and doors will open as you embark on the journey that is your career. This course program ensures that graduates have the capacity to meet the needs of employers. This course is producing graduates who are prepared to move into employment with skills and expectations that benefit their employers.
Members of staff in the Division of Electrical and Electronic Engineering (EEE) and in the School of engineering have well-established external links with industry (i.e. IBM, Oracle, Microsoft, Cisco – as an example we run the Cisco Academy) and external research links in collaboration with the existing research centres operating under the School of engineering. We offer research-informed approach to teaching. The School of Engineering has three Research Themes and all academic staff subscribe to at least one of three Research Centres; two research centres are led by EEE members of staff.
An industrial advisory board operates both at school level and division level and feeds into the curriculum design. Membership of the board is drawn from industry, research and distinguished alumni who lend their expertise and advise which shapes our offering.
The programme has been designed to give maximum opportunity to demonstrate the skills required for a full career using the techniques learned on the course.
This degree is accredited by the Institute of Chemical Engineers (IChemE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
The Institution of Chemical Engineers (IChemE) is the global professional membership organisation for people with relevant experience in chemical engineering. Having this accreditation helps progression towards Chartered Engineer status, which is an internationally recognised qualification.
Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).
An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).
Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.
- IChemE is the global professional membership organisation for people with relevant experience in chemical engineering. Having this accreditation helps progression towards Chartered Engineer status, which is an internationally recognised qualification.
Teaching and Assessment
As the teaching team in the Division of Chemical and Energy Engineering, we are enthusiastic about our teaching and research. We are a multidisciplinary team with expertise in chemical engineering, energy engineering, and materials engineering, some with industrial experience.
All modules are taught through a combination of three or more of lectures, tutorials, computer workshop, laboratory practical, seminars and group work which deliver the intended knowledge and understanding, and intellectual/practical/transferrable skills. There are workshops which are run by external guest lecturers from relevant industries.
Most modules are assessed through both examination and individual/group coursework, with typical weightings of 70% examination and 30% coursework. There are a few modules which are based on 100% coursework throughout your studies mainly with focus on process or product design.
Your personal tutor is assigned during the first three weeks of starting the course. Your personal tutor will be your first point of contact should you have any questions about the course, academic regulations, and the university facilities to support your studies. You will have a couple of timetabled meetings with your personal tutor each semester during the first year to get to know them.