
Mechanical Intelligence (MI) Research Group
The Mechanical Intelligence (MI) Research Group, led by Dr Hamed Rajabi, takes a multidisciplinary approach to understand the complexities of biological systems, aiming to transform life-inspired principles into advanced technologies. By integrating knowledge from multiple disciplines, we explore the mechanical characteristics of nature, from the micro to macro scales, to innovate and enhance engineering systems. Our research spans from fundamental discoveries to real-world applications, paving the way for cutting-edge solutions in structural engineering, robotics, materials science, and beyond. We are a dynamic and inclusive community, eager to collaborate with visionary minds passionate about pushing the boundaries of engineering inspired by life.
Mechanical Intelligence (MI) Research Group is a leader in the emerging field of Mechanical Intelligence, which we’ve developed to revolutionize engineering by integrating the principles of biology into intelligent design. Our mission is to decode the mechanical strategies found in nature and translate them into advanced technologies that minimize the need for active actuation and complex control systems. By enhancing the inherent intelligence of structural designs, we aim to create adaptive systems that are more efficient, resilient, and multifunctional.
Our research pillars:
- Biomechanics of Biological Systems: Currently, we focus on understanding the relationship between the structure and design of insect wings and their adaptive responses during flight. Our research also uncovers the design strategies that make wings damage-resistant, enabling them to withstand millions of loading cycles and mechanical collisions. These insights inspire the development of advanced flying mechanisms that require less active control while maintaining high efficiency and durability.
- Bioinspired Adaptive Structures: Our work in adaptive structures aims to reduce reliance on external control systems by embedding intelligence directly into the design. These structures are not only capable of autonomously adapting to their environments but also offer multifunctionality. By learning from biological systems, we develop engineering systems that automatically adjust to changing conditions, reducing the need for complex actuation and control.
- Bioinspired Biomedical Tools and Devices: We aim to design end-effectors for surgical applications that achieve multifunctionality, significantly enhancing surgical efficiency by reducing the need for tool exchanges during procedures. By incorporating mechanical intelligence, these tools can perform multiple tasks, streamlining surgical processes and improving patient outcomes.
- Bioinspired Drones: Our research focuses on developing hybrid drones capable of operating across multiple domains and incorporating flapping wing designs inspired by insects. These drones are designed to be highly adaptable and efficient, reducing the need for complex control systems by relying on their intelligent, bioinspired design to perform in various environments with maximal energetic efficiency.
Why engage with us?
The Mechanical Intelligence (MI) Research Group is not just another research team—we are redefining the future of engineering by blending principles from biology with cutting-edge technology. What makes us unique is our interdisciplinary expertise, combining knowledge from mechanical engineering, electrical engineering, computer science, modeling and simulation, biology, and materials science. This broad spectrum of expertise allows us to address complex engineering challenges from multiple angles, leading to innovative solutions that are more efficient, robust, and adaptive.
Our research is centered on Mechanical Intelligence, a concept that reduces the need for complex control systems by embedding intelligence into the very design of structures. This approach minimizes the need for active actuation, making systems smarter and more autonomous. Our work spans across fields like biomedical engineering, robotics, adaptive structures, and drone technology, impacting both fundamental science and real-world applications.
We are also deeply committed to promoting equality, diversity, and inclusion (EDI), aligning with LSBU’s strong focus on reducing inequality. In the 2024 Times Higher Impact Rankings, LSBU was ranked third in the world for its efforts in this area. As part of this mission, we foster an inclusive, supportive environment that welcomes diverse perspectives and encourages collaboration from all backgrounds.
We invite postgraduate students, postdocs, industry professionals, and research collaborators to join us in pushing the boundaries of what’s possible. Whether you're looking to collaborate on innovative projects, join a leading research community, or work on solving real-world challenges through Mechanical Intelligence, there’s a place for you in our group.

- Prof Chung-Ping Lin, Department of Life Science, National Taiwan Normal University
- Prof Poramate Manoonpong, The Maersk Mc-Kinney Moller Institute, The University of Southern Denmark
- Prof Stanislav Gorb, Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University
- Dr Shuto Ito, Nikko Kasei Co. Ltd.
- Dr Mikihiro Hayashi, Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology
- Dr Jianing Wu, School of Aeronautics and Astronautics, Sun Yat-Sen University
- Dr Geoff Goss, School of Engineering, London South Bank University
Dr Hamed Rajabi (Leader)
Dr Ali Khaheshi (Postdoctoral Researcher)
Nasif Bin Saif (PhD Student)
Sepehr H. Eraghi (PhD Student)
Zelin Wang (PhD Student)
Amir Peikherfeh (PhD Student)
Mircea Radu (BEng, MSc Student)
Gabriel- B.G Falcao (BEng, MSc Student)
Eva Leonaite (BEng Student)
IEEE/ASME Transactions on Mechatronics 2025
Bio-Inspired tensegrity building block with anisotropic stiffness for soft robots
J. Zhang J. Shi Y. Zhao J. Yang H. Rajabi JH. Peng J. Wu
https://doi.org/10.1109/TMECH.2025.3532491
Droplet 2025
Water-proofing mechanism of coupling structures observed in ladybird elytra and its bionic application
J. Zhang H. Yang J. Cai J. Shi Y. Zheng H. Rajabi J. Zhao J. Wu
https://doi.org/10.1002/dro2.162
Insect Science 2025
Kinematics and directionality of body turning in water striders (Gerris argentatus) on the water surface
J. Meshkani H. Rajabi A. Kovalev S. N. Gorb
https://doi.org/10.1111/1744-7917.13486
IEEE/ASME Transactions on Mechatronics 2024
Adaptive, Rapid, and Stable Trident Robotic Gripper A Bistable Tensegrity Structure Implementation
J. Zhang H. Yang Y. Zhao J. Yang Y. O. Aydin S. Li H. Rajabi H. Peng J. Wu
https://doi.org/10.1109/TMECH.2024.3516948
Scientific Reports 2024
Double-spiral as a bio-inspired functional element in engineering design
M. Jafarpour M. Aryayi S. N. Gorb H. Rajabi
https://doi.org/10.1002/adem.202300102
Scientific Reports 2024
WingAnalogy: a computer vision-based tool for automated insect wing asymmetry and morphometry analysis
S. Eshghi H. Rajabi S. Shafaghi N. Matushkina L. Claußen J. Poser T. H. Büscher S. N. Gorb
https://doi.org/10.1038/s41598-024-73411-x
Interface Focus 2024
Complexity biomechanics: a case study of dragonfly wing design from constituting composite material to higher structural levels
A. Toofani S. H. Eraghi A. Basti H. Rajabi
https://doi.org/10.1098/rsfs.2023.0060
Materials & Design 2024
Bioinspired compliant joints for passive-automatic adaptability
A. Khaheshi P. Singh S. Lavandeira S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.matdes.2024.112910
Advanced Science 2024
Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length
S. Eshghi H. Rajabi S. Shafaghi F. Nabati S. Nazerian A. Darvizeh S. N. Gorb
https://doi.org/10.1002/advs.202400844
Advanced Intelligent Systems 2024
WingSegment: A Computer Vision-Based Hybrid Approach for Insect Wing Image Segmentation and 3D Printing
S. Eshghi H. Rajabi J. Poser S. N. Gorb
https://doi.org/10.1002/aisy.202300712
Journal of The Royal Society Interface 2023
Strong attachment as an adaptation of flightless weevils on windy oceanic islands
L.-Y. Wang C.-P. Lin S. N. Gorb H. Rajabi
https://doi.org/10.1098/rsif.2023.0447
Communications Biology 2023
Basal complex: a smart wing component for automatic shape morphing
S. H. Eraghi A. Toofani R. J. A. Guilani S. Ramezanpour N. N. Bijma A. Sedaghat A. Yasamandaryaei S. N. Gorb H. Rajabi
https://doi.org/10.1038/s42003-023-05206-1
Journal of Zoology 2023
Patterns of load distribution among the legs in small water striders during standing and striding
J. Meshkani H. Rajabi A. Kovalev S. N. Gorb
https://doi.org/10.1111/jzo.13066
Advanced Engineering Materials 2023
Double-spirals offer the development of pre-programmable modular metastructures
M. Jafarpour S. N. Gorb H. Rajabi
https://doi.org/10.1002/adem.202300102
Advanced Intelligent Systems 2023
In Situ Reconfigurable Continuum Robot with Varying Curvature Enabled by Programmable Tensegrity Building Blocks
J. Zhang J. Shi J. Huang Q. Wu Y. Zhao J. Yang H. Rajabi Z. Wu H. Peng J. Wu
https://doi.org/10.1002/aisy.202300048
Journal of Experimental Biology 2023
A ballistic pollen dispersal strategy based on stylar oscillation of Hypochaeris radicata (Asteraceae)
S. Ito H. Rajabi S.N. Gorb
https://doi.org/10.1242/jeb.244258
Soft Robotic 2023
A Preprogrammable Continuum Robot Inspired by Elephant Trunk for Dexterous Manipulation
J. Zhang Y. Li Z. Kan Q. Yuan H. Rajabi Z. Wu H. Peng J. Wu
https://doi.org/10.1089/soro.2022.0048
Journal of The Royal Society Interface 2023
Double-spiral: a bioinspired preprogrammable compliant joint with multiple degrees of freedom
M. Jafarpour S. N. Gorb H. Rajabi
https://doi.org/10.1098/rsif.2022.0757
Applied Physics A 2023
Aerodynamic vs. frictional damping in primary flight feathers of the pigeon Columba livia
K. Deng C. F. Schaber A. Kovalev H. Rajabi Z. D. Dai S. N. Gorb
https://doi.org/10.1007/s00339-023-06395-6
Journal of Bionic Engineering 2023
The Role of Vanes in the Damping of Bird Feathers
K. Deng C. F. Schaber A. Kovalev H. Rajabi Z. D. Dai S. N. Gorb
https://doi.org/10.1007/s42235-022-00329-3
Proceedings of the National Academy of Sciences (PNAS) 2022
An insect-inspired asymmetric hinge in a double-layer membrane
H. Rajabi S. H. Eraghi A. Khaheshi A. Toofani C. Hunt R. J. Wootton
https://doi.org/10.1073/pnas.2211861119
Advanced Science 2022
Mechanical Intelligence (MI): A Bioinspired Concept for Transforming Engineering Design
A. Khaheshi H. Rajabi
https://doi.org/10.1002/advs.202203783
Advanced Materials Interfaces 2022
Conflicting requirements for transparency and mechanical stability in the compound eyes of desert locusts
C. Li H. Rajabi S. N. Gorb
https://doi.org/10.1002/admi.202200766
Scientific Reports 2022
An image based application in Matlab for automated modelling and morphological analysis of insect wings
S. Eshghi F. Nabati S. Shafaghi V. Nooraeefar A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.1038/s41598-022-17859-9
Beilstein Journal of Nanotechnology 2022
Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation
C. Li S. N. Gorb H. Rajabi
https://doi.org/10.3762/bjnano.13.33
The Science of Nature 2022
The damping properties of the foam‑filled shaft of primary feathers of the pigeon Columba livia
K. Deng A. Kovalev H. Rajabi C. F. Schaber Z. D. Dai S. N. Gorb
https://doi.org/10.1007/s00114-021-01773-7
Acta Biomaterialia 2021
Biomechanical strategies to reach a compromise between stiffness and flexibility in hind femora of desert locusts
C. Li S. N. Gorb H. Rajabi
https://doi.org/10.1002/aisy.202100133
Advanced Intelligent Systems 2021
Fin Ray Crossbeam Angles for Efficient Foot Design for Energy-Efficient Robot Locomotion
P. Manoonpong H. Rajabi J. C. Larsen S. S. Raoufi N. Asawalertsak J. Homchanthanakul H. T. Tramsen A. Darvizeh S. N. Gorb
https://doi.org/10.1002/aisy.202100133
Bioinspiration & Biomimetics 2021
Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls
J. Zhang Q. Yuan Y. Jiang H. Pang H. Rajabi Z. Wu J. Wu
https://doi.org/10.1088/1748-3190/ac1cef
Bioinspiration & Biomimetics 2021
Double-rowed teeth: design specialization of the Harpegnathos venator ants for enhanced tribological stability
W. Zhang Z. Wu Z. Wang Z. Wang C. Li H. Rajabi J. Wu
https://doi.org/10.1088/1748-3190/ac124a
Communications Biology 2021
The damping and structural properties of dragonfly and damselfly wings during dynamic movement
C. Lietz C. F. Schaber S. N. Gorb H. Rajabi
https://doi.org/10.1038/s42003-021-02263-2
Advanced Science 2021
Wing coupling in bees and wasps: From the underlying science to bioinspired engineering
S. H. Eraghi A. Toofani A. Khaheshi M. Khorsandi A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.1002/advs.202004383
Advanced Science 2021
Triple stiffness: A bioinspired strategy to combine load-bearing, durability and impact-resistance
A. Khaheshi S. N. Gorb H. Rajabi
https://doi.org/10.1002/advs.202004338
Scientific Reports 2021
Penetration mechanics of elongated female and male genitalia of earwigs
Y. Matsumura Y. Kamimura C.-Y. Lee S. N. Gorb H. Rajabi
https://doi.org/10.1038/s41598-021-86864-1
Applied Physics A 2021
Excavation mechanics of the elongated female rostrum of the acorn weevil Curculio glandium (Coleoptera; Curculionidae)
Y. Matsumura M. Jafarpour M. Reut B. Shams Moattar A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.1007/s00339-021-04353-8
Applied Physics A 2021
Spiky-joint: a bioinspired solution to combine mobility and support
A. Khaheshi S. N. Gorb H. Rajabi
https://doi.org/10.1007/s00339-021-04310-5
Science Robotics 2021
A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike
S. Büsse A. Koehnsen H. Rajabi S. N. Gorb
https://doi.org/10.1016/j.matdes.2020.109354
Materials & Design 2021
Against the wind: A load-bearing, yet durable, kite inspired by insect wings
A. Khaheshi H. T. Tramsen S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.matdes.2020.109354
Journal of The Royal Society Interface 2020
Functional significance of graded properties of insect cuticle supported by an evolutionary analysis
M. Jafarpour Sh. Eshghi A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.1098/rsif.2020.0378
The Science of Nature 2020
Material heterogeneity of male genitalia reduces genital damage in a bushcricket during sperm removal behaviour
Y. Matsumura M. Jafarpour S. A. Ramm K. Reinhold S. N. Gorb H. Rajabi
https://doi.org/10.1007/s00114-020-01706-w
Journal of Experimental Biology 2020
Insect wing damage: causes, consequences and compensatory mechanisms
H. Rajabi J.-H. Dirks S. N. Gorb
https://doi.org/10.1242/jeb.215194
Insects 2020
WingMesh: A Matlab-Based Application for Finite Element Modeling of Insect Wings
Sh. Eshghi V. Nooraeefar A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.3390/insects11080546
Acta Biomaterialia 2020
Biomechanical strategies underlying the durability of a wing-to-wing coupling mechanism
A. Toofani S. H. Eraghi M. Khorsandi A. Khaheshi A. Darvizeh S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.actbio.2019.12.013
International Journal of Odonatology 2020
How do dragonfly wings work? A brief guide to functional roles of wing structural components
H. Rajabi S. N. Gorb
https://doi.org/10.1080/13887890.2019.1687229
Acta Biomaterialia 2019
Cuticle sclerotization determines the difference between the elastic moduli of locust tibiae
C. Li S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.actbio.2019.09.027
International Journal of Odonatology 2019
How do dragonfly wings work? A brief guide to functional roles of wing structural components
H. Rajabi S. N. Gorb
https://doi.org/10.1080/13887890.2019.1687229
Acta Biomaterialia 2019
Biomechanics of fore wing to hind wing coupling in the southern green stink bug Nezara viridula (Pentatomidae)
Y. Ma Ch. Wan S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.actbio.2019.09.027
Soft Matter 2019
Endocuticle sclerotisation increases mechanical stability of cuticle
L.-Y. Wang M. Jafarpour C.-P. Lin E. Appel S. N. Gorb H. Rajabi
https://doi.org/10.1039/C9SM01687B
Insect Physiology 2019
Structure, properties and functions of the forewing-hindwing coupling of honeybees
Y. Ma H. Ren H. Rajabi H. Zhao J. Ning S. N. Gorb
https://doi.org/10.1016/j.jinsphys.2019.103936
Arthropod Structure & Development 2019
Functional morphology of the sting in two digger wasps (Hymenoptera: crabronidae)
H. Stetsun H. Rajabi N. Matushkina S. N. Gorb
https://doi.org/10.1016/j.asd.2019.100882
Journal of the Mechanical Behavior of Biomedical Materials 2019
On the fracture resistance of dragonfly wings
J. Rudolf L.-Y. Wang S. N. Gorb H. Rajabi
https://doi.org/10.1016/j.jmbbm.2019.07.009
Scientific Reports 2019
Sperm transfer through hyperelongated beetle penises–morphology and theoretical approaches
Y. Matsumura J. Michels H. Rajabi T. Shimozawa S. N. Gorb
https://doi.org/10.1038/s41598-019-46211-x
Acta Biomaterialia 2019
Mechanical behavior of ctenoid scales: Joint-like structures control the deformability of the scales in the flatfish Solea solea (Pleuronectiformes)
M. Spinner C. F. Schaber S-M. Chen M. Geiger S. N. Gorb H. Rajabi
http://dx.doi.org/10.1016/j.actbio.2019.05.011
Frontiers in Physiology 2018
Biomechanical strategies underlying the robust body armour of an aposematic weevil
L.-Y. Wang H. Rajabi N. Ghoroubi C.-P. Lin S. N. Gorb
http://dx.doi.org/10.3389/fphys.2018.01410
Journal of The Royal Society Interface 2018
A simple, high-resolution, non-destructive method for determining the spatial gradient of the elastic modulus of insect cuticle
Sh. Eshghi M. Jafarpour A. Darvizeh S. N. Gorb H. Rajabi
http://dx.doi.org/10.1098/rsif.2018.0312
Journal of The Royal Society Interface 2018
Both stiff and compliant: Morphological and biomechanical adaptations of stick insect antenna for tactile exploration
H. Rajabi A. Shafiei A. Darvizeh S. N. Gorb V. Dürr J.-H. Dirks
https://doi.org/10.1098/rsif.2018.0246
Arthropod Structure & Development (Special Issue in Insect Flight) 2018
Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera)
H. Rajabi K. Stamm E. Appel S. N. Gorb
https://doi.org/10.1016/j.asd.2018.01.003
Journal of Experimental Biology 2018
How does a slender tibia resist buckling? Effect of material, structural and geometric characteristics on buckling behaviour of the hindleg tibia in stick insect postembryonic development
M. Schmitt T. H. Büscher S. N. Gorb H. Rajabi
https://doi.org/10.1242/jeb.173047
Biology Open 2017
The probability of wing damage in the dragonfly Sympetrum vulgatum (Anisoptera: Libellulidae): a field study
H. Rajabi V. Schroeter Sh. Eshghi S. N. Gorb
https://doi.org/10.1242/bio.027078
Acta Biomaterialia 2017
Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation
H. Rajabi N. Ghoroubi K. Stamm E. Appel S. N. Gorb
https://doi.org/10.1016/j.actbio.2017.07.034
Journal of The Royal Society Interface 2017
Stiffness distribution in insect cuticle: a continuous or a discontinuous profile?
H. Rajabi M. Jafarpour A. Darvizeh J.-H. Dirks S. N. Gorb
https://doi.org/10.1098/rsif.2017.0310
Biomechanics and Modeling in Mechanobiology 2017
Wing cross veins: an efficient biomechanical strategy to mitigate fatigue failure of insect cuticle
H. Rajabi P. Bazargan A. Pourbabaei Sh. Eshghi A. Darvizeh S. N. Gorb D. Taylor J.-H. Dirks
http://dx.doi.org/%2010.1007/s10237-017-0930-6
Scientific Reports 2016
Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings
H. Rajabi A. Shafiei A. Darvizeh S. N. Gorb
http://dx.doi.org/10.1038/srep39039
PLoS ONE 2016
Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation
H. Rajabi N. Ghoroubi M. Malaki A. Darvizeh S. N. Gorb
http://dx.doi.org/10.1371/journal.pone.0160610
Royal Society Open Science 2016
Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling
H. Rajabi N. Ghoroubi A. Darvizeh E. Appel S. N. Gorb
http://dx.doi.org/%2010.1098/rsos.150610
Royal Society Open Science 2016
Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins
H. Rajabi A. Shafiei A. Darvizeh J-H. Dirks E. Appel S. N. Gorb
http://dx.doi.org/10.1098/rsos.160006
Applied Physics A 2016
A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings
H. Rajabi M. Rezasefat A. Darvizeh J-H. Dirks Sh. Eshghi A. Shafiei T. Mirzababaie Mostofi S. N. Gorb
http://dx.doi.org/10.1007/s00339-015-9557-6
Journal of Science and Technology of Composites 2016
Simple finite element modeling of planar composite structures using digital image processing technique in Matlab
Sh. Eshghi H. Rajabi A. Darvizeh V. Nooraeefar M. Alitavoli H. Babaei
Scientia Iranica 2016
A Simple method for geometric modelling of biological structures using image processing technique
Sh. Eshghi H. Rajabi A. Darvizeh V. Nooraeefar A. Shafiei T. Mirzababaie Mostofi M. Monsef
AmirKabir Journal of Science & Research (Mechanical Engineering) 2016
Experimental and numerical investigations of crack propagation in dragonfly wing veins
H. Rajabi A. Shafiei A. Darvizeh H. Babaei
http://dx.doi.org/10.22060/mej.2016.598
Bioinspiration & Biomimetics 2015
A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints
H. Rajabi N. Ghoroubi A. Darvizeh J-H. Dirks E. Appel S. N. Gorb
http://dx.doi.org/10.1088/1748-3190/10/5/056003
Journal of Biomechanics 2015
Numerical investigation of insect wing fracture behaviour
H. Rajabi A. Darvizeh A. Shafiei J-H. Dirks D. Taylor
http://dx.doi.org/10.1016/j.jbiomech.2014.10.037
Ecotoxicology 2014
Design, development and demonstration of an improved bird washing machine
H. Rajabi H. Monsef M. Zare A. Armandei M. Moghadami
http://dx.doi.org/10.1007/s10646-014-1238-2
Journal of the Mechanical Behavior of Biomedical Materials 2014
Experimental and numerical investigations of Otala lactea’s shell I. Quasi-static analysis
H. Rajabi A. Darvizeh A. Shafiei Sh. Eshghi A. Khaheshi
http://dx.doi.org/10.1016/j.jmbbm.2013.12.008
Modares Journal of Mechanical Engineering 2014
Investigation of microstructure and mechanical behavior of Woodlouse shells using experimental methods and numerical modeling
A. Darvizeh S. Anami Rad M. Darvizeh R. Ansari H. Rajabi
Modares Journal of Mechanical Engineering 2014
Investigation of the effects of constructional elements on the biomechanical behavior of desert locust hind wing
A. Darvizeh N. Shafiee M. darvizeh H. Habibollahi H. Rajabi
Chinese Physics B 2013
Experimental investigations of the functional morphology of dragonfly wings
H. Rajabi A. Darvizeh
http://dx.doi.org/10.1088/1674-1056/22/8/088702
Journal of the Mechanical Behavior of Biomedical Materials 2012
Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume
M. Faghih-Shojaei V. Mohammadi H. Rajabi A. Darvizeh
http://dx.doi.org/10.1016/j.jmbbm.2012.08.006
Journal of Mechanics 2012
Elasto-Plastic Analysis of Thick Cylinders Subjected to Internal Electro-magnetic Loading
H. Rajabi A. Darvizeh
http://dx.doi.org/10.1017/jmech.2012.51
Engineering Analysis with Boundary Elements 2011
Three Dimensional Static and Dynamic Analysis of thick Functionally Graded Plates by the Meshless Local Petrov-Galerkin (MLPG) Method
A. Rezaei A. Darvizeh A. Basti H. Rajabi
http://dx.doi.org/10.1016/j.enganabound.2011.05.011
International Journal of Nature & Design & Ecodynamics 2011
Modeling and Simulation of Spider’s Walking
A. Rezaei M. Alitavoli A. Darvizeh H. Rajabi
http://dx.doi.org/%2010.2495/DNE-V6-N2-83-96
Journal of Bionic Engineering 2011
Investigation of Microstructure, Natural Frequencies and Vibration Modes of Dragonfly Wing
H. Rajabi M. Moghadami A. Darvizeh
Modares Journal of Mechanical Engineering 2010
Nonlinear analysis of multi-layered beams with piezoelectric layers considering large deformations
M. Darvizeh A. Darvizeh V. Arab Zadeh H. Rajabi
International Journal of Multiphysics 2009
Free Vibration Analysis of Dragonfly Wings using Finite Element Method
M. Darvizeh A. Darvizeh H. Rajabi A. Rezaei
http://dx.doi.org/10.1260/175095409787924454