Gain a forward thinking approach to the energy balance of the future by learning how traditional concepts of energy generation can be applied to sustainable processes such as geothermal, tide, wind and solar. The course brings together the essentials of chemical engineering with an added flavour of geoscience, exploration and processing to highlight and develop a deep understanding of the energy mix. It will show how oil and gas techniques can be used to harness geothermal energy, develop concepts of carbon dioxide storage in subsurface environments and inform you on the myriad of renewable energy technologies that are available.
ModeFull-time | Duration3 years (4 years with placement) | Start dateSeptember | Application codeH805 | Application method UCAS |
ICHEME
London South Bank University student union is located at 103 Borough Rd, London SE1 0AA.
If you are visiting our Southwark Campus, you may wish to use our downloadable campus map (PNG File 466 KB). For information on accessibility, see our DisabledGo access guides. See our location page for more details.
In order to be considered for entry to the programme you will be required to have:
Equivalent international qualifications can be accepted. English language qualifications for international students: IELTS score of 6.0 or Cambridge Proficiency or Advanced Grade C.
Advanced entry
If you have already completed some studies at another university, we may be able to consider you for an advanced entry. Please see our advanced entry page for more information.
Select country here:
If you have already completed some studies at another university, we may be able to consider you for advanced entry. Please see our advanced entry page for more information.
£9250.00
Tuition fees for home students
£15900.00
Tuition fees for international students
Tuition fees are subject to annual inflationary increases. Find out more about tuition fees
For more information, including how and when to pay, see our fees and funding section for undergraduate students.
Please check your fee status and whether you are considered a Home, EU or International student for fee-paying purposes and for our regulatory returns, by reading the UKCISA regulations.
See our Tuition Fees Regulations (PDF File 391 KB) and Refund Policy (PDF File 775 KB).
The University reserves the right to increase its fees in line with changes to legislation, regulation and any government guidance or decisions.
The fees for international students are reviewed annually and the University reserves the right to increase the tuition fees in line with the RPIX measure of inflation up to 4 per cent.
We offer several types of fee reduction through our scholarships and bursaries. Find the full list and other useful information on our scholarships page.
The course is not currently open to international students.
International (non Home) applicants should follow our international how to apply guide.
Mode Full-time | Duration 3 years (4 years with placement) | Start date September | Application code H805 | Application method UCAS |
Once we have made you an offer, you can apply for accommodation. You can rent from LSBU and you’ll deal directly with the university, not third party providers. That means we can guarantee you options to suit all budgets, with clear tenancy agreements and all-inclusive rents that include insurance for your personal belongings, internet access in each bedroom and on-site laundry facilities.
Or, if you’d rather rent privately, we can give you a list of landlords – just ask our Accommodation Service.
Read more about applying for accommodation at LSBU.
You don't need to wait for a confirmed place on a course to start applying for student finance. Read how to pay your fees as an undergraduate student.
After you’ve received your offer we’ll send you emails about events we run to help you prepare for your course.
Before you start your course we’ll send you information on what you’ll need to do before you arrive and during your first few days on campus. You can read about the process on our Enrolment pages.
This course is distinctive as it covers the theory of chemical engineering coupled with computer simulation, laboratory practice and industrial placement that enable graduates to be well equipped with desired skills sought after by employers. It also has the added value of introducing topics that are important for future energy mixed with a focus on renewables as well as oil & gas.
The total credit value of the course is 360 credits which are made up of 14 standard (20 points) modules and one final year project module of 40 points. Each year you need to complete 120 credits.
In the first year, you are introduced to basic engineering practice, design engineering and fundamentals of chemical engineering. The second year focuses on core unit operations such as fluid flow, thermodynamics, chemical reactions, separation processes, process -design,-simulation and -control.
In the final year, the course trains you in specific areas of sustainable energy, energy technologies, and earth resources of energy and enhance how it works on the large scale
Also, in the final year project, the students will apply all the knowledge gained throughout the course into a design project, which typically covers all aspects of an industrial scale process design from raw materials feedstock to final market valuable products taking into account cost estimation, HAZOP, environmental impact &sustainability analysis as well as scaling operational units to optimization.
After two-years study, you are encouraged to have one-year industrial placement (sandwich course) which LSBU can provide you with support how to search via Careers Hub.
At LSBU, we want to set you up for a successful career. During your studies – and for two years after you graduate – you’ll have access to our Employability Service, which includes:
Our Student Enterprise team can also help you start your own business and develop valuable entrepreneurial skills.
Energy and chemical engineering are growth sectors for the UK and across the world. The solutions to our current problems will be solved by creative and energetic engineers; this is your time to make a difference.
LSBU has an enviable reputation for employability and entrepreneurship. Our graduates find opportunities across the world and make an impact wherever they go. The combination of Engineering and LSBU’s focus on high-quality teaching and skills development with a vocational drive is key to the success of our graduates. Study with us and doors will open as you embark on the journey that is your career.
This degree opens a wealth of sectors to you: chemical industries, food and drink industry, pharmaceuticals and oil & gas industries. In particular, you will be trained for a career in the energy sector. Duties may involve project leading, leading environmental decision makings or participate in energy optimisations and retrofitting existing designs or be a research and development engineer working on new plants, systems and processes.
The students in our BEng course may wish to transfer to the corresponding MEng Chemical and Energy Engineering if qualified, or apply for any of the divisions MSc courses; Advanced Chemical Engineering, MSc Future Energy Engineering or MSc Process Safety.
There are also several opportunities to apply to a PhD in Chemical Process and Energy Engineering in our Division
The programme has been designed to give maximum opportunity to demonstrate the skills required for a full career using the techniques learned on the course.
This degree is accredited by the Institute of Chemical Engineers (IChemE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
The Institution of Chemical Engineers (IChemE) is the global professional membership organisation for people with relevant experience in chemical engineering. Having this accreditation helps progression towards Chartered Engineer status, which is an internationally recognised qualification.
Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).
An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).
Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.
As the teaching team in the Division of Chemical and Energy Engineering, we are enthusiastic about our teaching and research. We are a multidisciplinary team with expertise in chemical engineering, energy engineering, and materials engineering, some with industrial experience.
All modules are taught through a combination of three or more of lectures, tutorials, computer workshop, laboratory practical, seminars and group work which deliver the intended knowledge and understanding, and intellectual/practical/transferrable skills. There are workshops which are run by external guest lecturers from relevant industries.
Most modules are assessed through both examination and individual/group coursework, with typical weightings of 70% examination and 30% coursework. There are a few modules which are based on 100% coursework throughout your studies mainly with focus on process or product design.
Your personal tutor is assigned during the first three weeks of starting the course. Your personal tutor will be your first point of contact should you have any questions about the course, academic regulations, and the university facilities to support your studies. You will have a couple of timetabled meetings with your personal tutor each semester during the first year to get to know them.