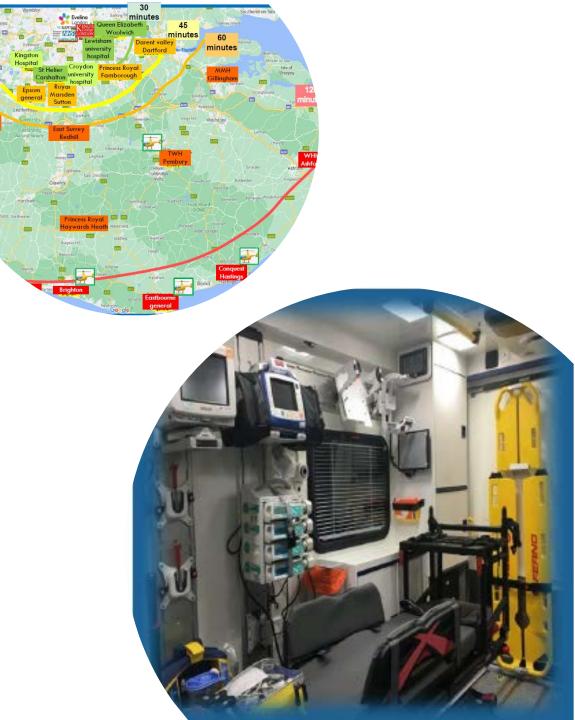
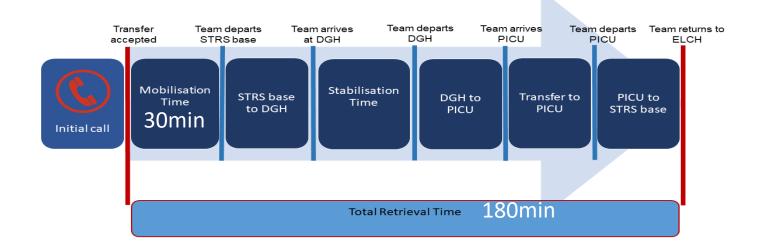
Prescribing for Critically Unwell Children


Catia Pinto, ACP

Overview

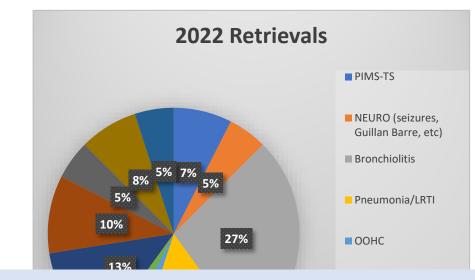
- The role of the ACP in PICU and retrieval
- The differences prescribing in intensive care vs retrieval
- My typical day
- Case study-inotropic support for septic shock
- Some challenges (legal and non-legal) aspects of prescribing
- How prescribing enhances the role of the ACP


Retrieval Service

- Last year approximately 1700 calls, 900 activated
- Advice or/and transfer request
- 60% of the activated calls were led by ACPs
- Majority of the children retrieved were < 1year old with respiratory symptoms
- Daily interventions and prescriptions either advised or performed

Retrieval Service

- Integrated Service
- 13% of the time spent on **follow up referral calls**
- 63% of the time directly related to **patient care**
- 20% of the time supporting PICU activities



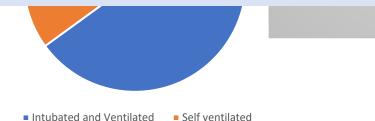
Examples of interventions

- Intubation/ Re-intubation
- Venous/arterial access
- Starting vasoactive infusions
- Chest drain insertion

My role as an ACP

- Initial management/advice over the phone
- Retrieval acceptance

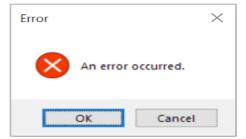
arrythmias, etc.)


Stabilisation

"There were no differences in the adjusted mortality between transports led

2022 Retrievals

by ANPs and Junior Doctors "DEPICT study 2021


- Personal development
- Ongoing DGH teaching
- Link ACP for two hospitals of the region
- Case reviews/teaching locally

PICU – My role and an ACP

- Level 3 Advanced PICU
- Wide range of conditions and support
- Four pillars of advanced practice
- Assess, diagnose and make treatment plan
 - -Advanced technical procedures
 - -Communication skills
- Supervise junior doctors/other ACPs
- Teaching
- Part of working groups
- Continuous research

Prescribing in the critical care setting

Assessing medication prescribing errors in pediatric intensive care units*

Michael A. Cimino, RPh, MS; Mark S. Kirschbaum, RN, PhD; Linda Brodsky, MD; Steven H. Shaha, PhD, DBA; for the Child Health Accountability Initiative

Paediatric Critical Care Medicine, 2004

- **11.1%** incidence of prescribing errors
- Wrong dose was the most common error
- Only factor accounting for differences between units was the prescriber-patient ratio

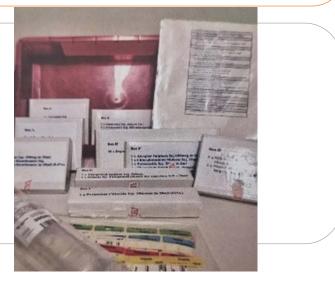
Exploring the human factors of prescribing errors in paediatric intensive care units

Adam Sutherland, ^{• 1,2,3} Darren M Ashcroft, ^{1,3} Denham L Phipps^{1,3}

British Medical Journal, 2019

- **18%** incidence of prescribing errors
- Cognitive burden was the main factor
- Themes:
 - -Individual factors
 - -Organisational factors
 - -Task related factors
 - -Team related factors
 - -Work related factors

PICU vs Retrieval


PROS

CONS

Electronic system
More resources
Specialised nursing team
Time to know patient

More drugs
Complex patients
Higher workload (more than one patient)
Variety of conditions

Prescribing as an ACP

A prospective audit of a nurse independent prescribing within critical care

Martin Carberry, Sarah Connelly and Jennifer Murphy

British Association of Critical Care Nurses position statement on prescribing in critical care

Kate Bray, Deborah Dawson, Vanessa Gibson, Heather Howells, Heather Cooper, Joanna McCormick and Catherine Plowright

- Nursing in Critical Care, 2012
- 1418 prescriptions in total
- 2.8% incidence of prescribing errors
- Error rate **0.6%** ACPs vs **3.4%** medical team

- Nurse prescribing aim should be the improvement of care
- Not a substitute to medical prescribing practice
- Audit and continuous practice evaluation

Case study

- 12-year-old, 48Kg
- Two-day history of fever and lethargy Observations:

SatO₂ 94% on air

RR 25bpm

HR 110bpm

Normotensive

- Transferred to the ward
- Started on co-amoxiclav for chest cover

24hours after

- Hypotension and increased lactate
- Treated for sepsis
- Retrieval services contacted as the patient might need inotropes
- Received 30ml/kg fluid

 Medication advice:
 -Change antibiotics to broad spectrum
 -Prepare intubations drugs...

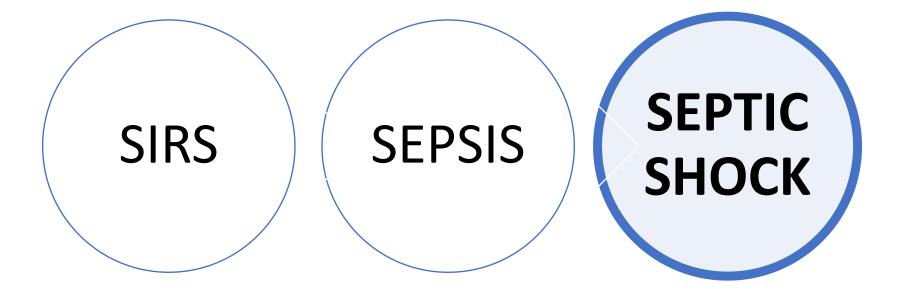
BNF Chapter 5 Infection

Case study

<u>On arrival</u> Not intubated, preparing for intubation

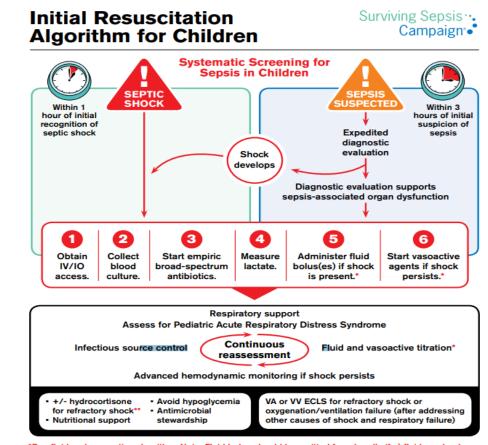
Drugs requested:

Fentanyl 1-2mcg/kg carefully titrated: synthetic opioid with better cardiovascular stability **Ketamine** 1-2mcg/kg: NMDA receptor antagonist preferred induction agent in shock or haemodynamic compromise


Rocuronium 1mg/kg: non depolarising neuromuscular blocking drugs

Morphine infusion starting at 30mcg/kg/hr

Adrenaline infusion 0.1mcg/kg/min already started peripherally


Noradrenaline infusion requested

- BNF chapter 15 Anaesthesia
- BNF Chapter 4 Nervous system
- BNF Chapter 2 Cardiovascular system

Case study – Sepsis

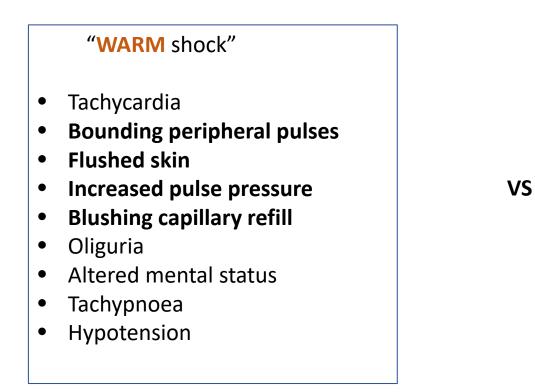
- **Sepsis** is a life-threatening organ dysfunction caused by a dysregulated host response to infection
- Worldwide leading cause of mortality and morbidity in children
- Early recognition is paramount
- Sepsis 6 campaign (senior clinician, oxygen, IV/bloods, antibiotics, fluid, early inotropes)
- Children compensate for longer, more difficult to know when unwell, more difficult to recognise shock

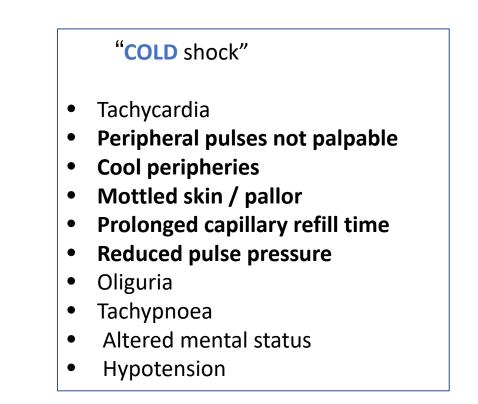
*See fluid and vasoactive algorithm. Note: Fluid bolus should be omitted from bundle if a) fluid overload is present or b) it is a low-resource setting without hypotension. Fluid in mL/kg should be dosed as ideal body weight.

**Hydrocortisone may produce benefit or harm.

Septic Shock is sepsis with cardiovascular organ dysfunction

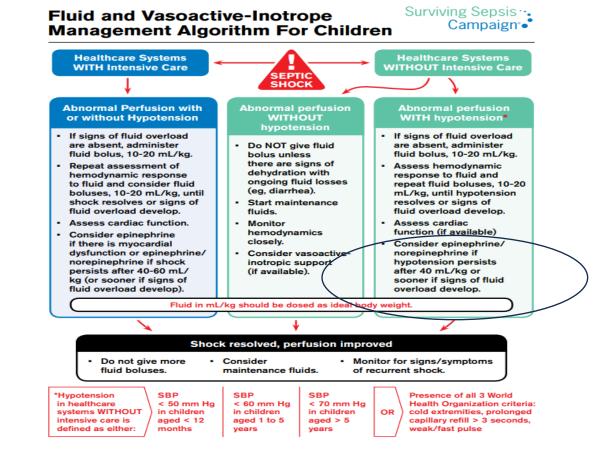
A clinical syndrome of inadequate tissue perfusion


 $DO_2 < VO_2$


- Increased capillary permeability
- Dysregulation of vascular tone
- Depression of myocardial function

Management principles

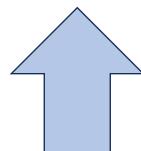
- Early recognition
- Fluid
- Early inotropes
- Early ventilation (unbalance DO2 and VO2)
- Find and address cause
- ANTIBIOTICS


Clinical signs

Note: In intensive care there are other measures: CVP, SvO₂, NIRS, lactate trend, arterial vs venous CO₂, POCUS

- How much to fill?
- How much to squeeze?
- How much to give?

• What do we want to achieve?


Tissue perfusion and oxygenation

 $CO = HR \times SV$

Autonomic Innervation Hormones Fitness Levels Age Contractibility Preload Afterload Duration of contraction

• Classification of inotropic agents

Catecholamines	Phosphodiesterase Inhibitors	Calcium Sensitising Agents	Others
 Dopamine Dobutamine Adrenaline Noradrenaline Vasopressin Phenylephrine Isoprenaline 	MilrinoneAmrinoneEnoxemone	• Levosimendan	• Digoxin

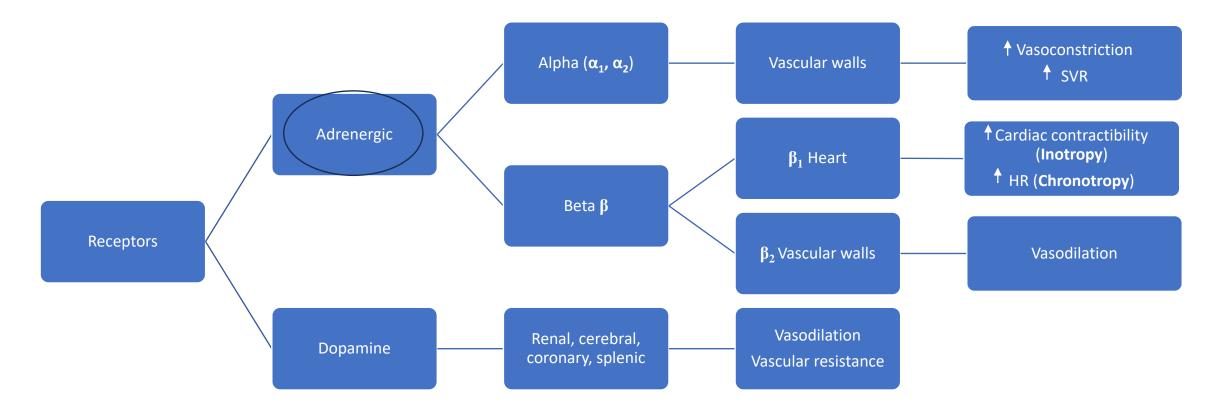
Catecholamines

Act on sympathetic nervous system

Individual drugs favour specific receptors

The drug actions are determined by the receptors they act on

Effects vary depending on dose

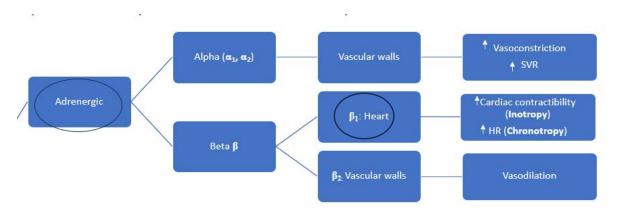

Pharmacokinetics/Administration

Short half-life (approximately 2 minutes)

Steady state reached in approximately 10 minutes

Extravasation can result in tissue necrosis

Different infusion concentrations depending on central or peripheral access

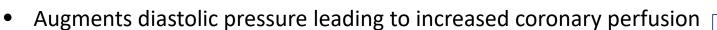


Case study – Adrenaline

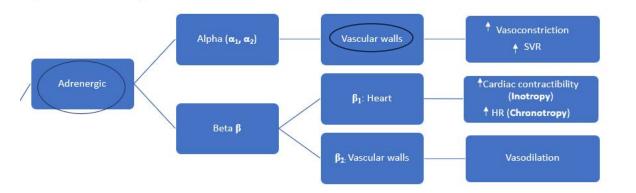
- Potent stimulator of β and α receptors
- Beta effects predominantly at lower doses
- Higher doses $\alpha > \beta$
- β_2 effects balanced out with α effects

Other effects

- Increased glucose production by hepatic glycogenolysis and gluconeogenesis
- Increased aerobic glycolysis leading to increased lactate production
- Increased myocardial oxygen consumption



Major side effects


- Extreme tachycardia
- Arrythmias
- Decreased tissue perfusion
- Decreased diastolic filling
- Decreased coronary perfusion

Case study – Noradrenaline

- Potent α_1 receptor agonist
- Modest β receptor activity
- Little chronotropic effects balanced out with reflex bradycardia from α₁

- Good for vasodilatory shock
- Increases stroke volume

-

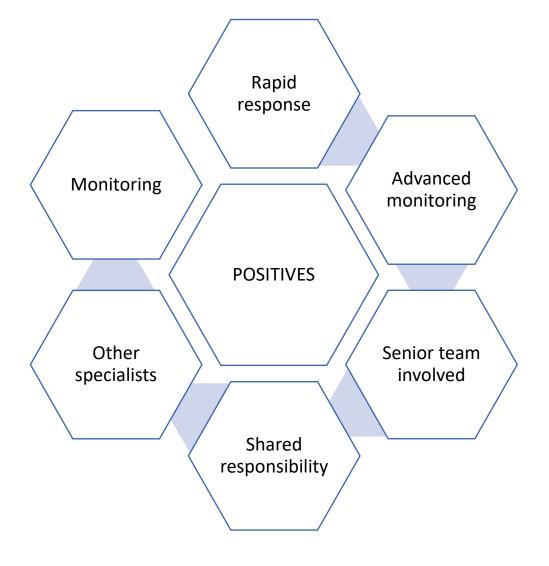
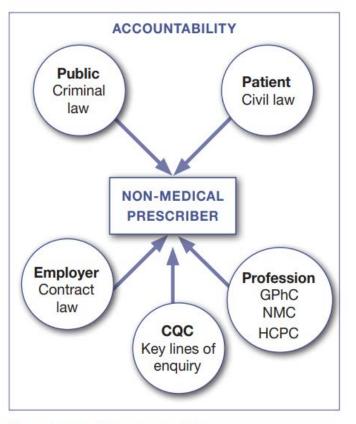

Major side effects
Peripheral digital ischaemia
Arrhythmias
Bradycardia

Table 4. Receptor actions of catecholamines


Drug	Receptor affinity	Action	Dose range (µg/kg/min)	Side effects
	Mainly α 1 agonist, some β 1 agonist action	Vasoconstriction increasing systemic vascular resistance	0.03-0.2	Reduced renal perfusion as a result of vasoconstriction, increased afterload will reduce stroke volume and increase myocardial exygen demand
Adrenaline	Low doses: B1 agonist	Increased heart rate, stroke volume and cardioc output	0.01-0.15*	Tachycardia and tachyarrhythmia, increased myocardial oxygen demand
	High doses: $\alpha 1$ agonist	Vasoconstriction at higher doses increasing systemic vascular resistance	0.01-0.15*	High concentrations can cause reduced cardiac output
Dobutamine	β1 agonist	Increased heart rate, increased cardiac output	2.5-25	Tachyarrhythmia, increased myocardial oxygen consumption
	β2 agonist	Vasadilatation and reduced systemic vascular resistance	2.5-25	Risk of hypotension
Dopomine	Low dose: dopamine receptor agonist	Vasadilatation of capillary beds, reduced systemic vascular resistance and increased cardiac output	1-3	Risk of tachyarrhythmia
	Medium dose: ß1 agonist	Increases contractility, stroke volume and cardioc output	3-10	Previously used at low ('renal') doses to maintain renal perfusion and function
	High dose: α 1 agonist	Vasoconstriction increasing afterload, peripheral resistance and mean arterial pressure	>10	No longer used as any benefit on renal outcome is caused by the increased cardiac output
			•	there is no strict cut off between high and low dose so dose range applies to both

British Journal of Hospital Medicine, 2012, Volume 73, No5

Figure 1. Prescribing accountability *Journal of Prescribing Practice*, 2019, 1(8).

🗯 GOV.UK

Home > Drug Safety Update

Off-label or unlicensed use of medicines: prescribers' responsibilities

"Healthcare professionals may have more responsibility to accurately prescribe an unlicensed medicine or an off-label medicine than when they prescribe a medicine within the terms of its license".

Better Practice

Best practice in prescribing off-label medication for children

Michelle Bennett

- Ensuring the pillars of accountability are used even more important
- Patients need to be at the centre of the decision-making process

How does prescribing improves my practice?

Autonomy				
Understanding physiopathology				
Multidisciplinary relationships				
Clinical assessment				
Differential diagnosis				

...

References

- APLS 6th edition
- Armstrong, A. (2019) Accountability and prescribing. *Journal of Prescribing Practice*, 1(8), pp. 406-410
- Aubugeau-Williams, P., Brierly, J. (2020) Consent in children's intensive care: the voices of the parents of critically ill children and those caring for them. *Journal Medical Ethics*, 46, pp.482-487
- Bennett, M. (2018) Best practice in prescribing off-label medication for children. *Nurse prescribing*, 16(5), pp. 234-237
- Christopher, B et al. (2008) Inotropes and Vasopressores: Review of Physiology and Clinical Use in Cardiovascular Disease. *Journal of the American Heart Association*
- Medicines and Healthcare products Regulatory Agency (2014) Off-label or unlicensed use of medicines: prescribers 'responsibilities
- Raman, S. (2021) Septic shock in children, in: *Challenging Concepts in Paediatric Critical Care. Cases with Expert Commentary*. Oxford: Oxford University Press, pp. 1-11
- Surviving Sepsis 2020

Questions?