

London South Bank University Course Specification

EST 1892

	A. Course Infor	mation											
Final award title(s)	Extended Degree P	Programme in	Engineering	FT 3184									
	Extended Degree P	Programme in	Engineering	PT 3185									
Intermediate exit award title(s)	None												
UCAS Code	H101		Course Code(s)	FT 318	184								
	London South Ba	ank University	y										
School				ENG 🗆									
Division	Chemical and En	ergy Engine	ering										
Course Director	Steve Faulkner												
Delivery site(s) for course(s)	 ☑ Southwark □ Havering □ Other: please specify 												
Mode(s) of delivery	⊠Full time ⊠Part time □other please specify												
Length of course/start and													
finish dates	Mode	Length year	rs Start	- month	Finish - month								
	Full time	1	Septe	ember	June								
	Full time with	N/A											
	placement/												
	sandwich year												
	Part time	1	Septe	ember	June								
	Part time with	N/A											
	Placement/												
	sandwich year												
Is this course generally	Please complete the	International Of	ffice questionn	aire									
suitable for students on a	Yes												
	Students are advised th	nat the structure/n	ature of the cou	rse is suitable	e for those on a Tier 4								
	visa but other factors wi	ill be taken into ac	ccount before a	CAS number	is allocated.								
Approval dates:	Course(s) validat Subject to validat	ed / tion	March 20	11									
	Course specificat updated and sign	tion last ned off	Update S	Jpdate Sept 2019									
Professional, Statutory & Regulatory Body accreditation	None												

Reference points:	Internal	Corporate Strategy 2015-2020							
		School Strategy							
		LSBU Academic Regulations							
	External	QAA Quality Code for Higher Education 2013							
		Subject Benchmark Statements 2018							
		PSRB							
		Competitions and Markets Authority							
		SEEC Level Descriptors 2010							
	B. Cour	se Aims and Features							
Distinctive features	The Extended De	gree programme is offered both as a full and part time course							
of course	and aims to prep	are and equip the students with the knowledge and skills							
	required to enable	e them to progress onto their chosen degree programme.							
Course Aims	The aims	of the programme are:							
	1. Te	o provide courses that add value in relation to entry							
	qualification	ons and to provide the academic and pastoral support to							
	enable stu	idents to achieve an Extended Degree.							
	2. To	provide a course of study in a scientific environment							
	offering th	e best possible opportunity for students to develop their							
	practical,	intellectual and personal skills;							
	3. To	respond to the differing needs of students, particularly							
	those from equal opp	n local areas in accordance with the policies and practice of ortunities;							
		To fosters students' enthusiasm for their subject, enabling							
	them to de	evelop intellectual, personal, practical and transferable							
	skills as a	sound basis for progression into work or further study;							
	5 To	aive students an adequate level of scientific and							
	numerical	literacy, so that they can thus approach the more							
	advanced	material in the rest of the Extended Degree programme.							
	6. To	integrate practical and theoretical aspects of the subject							
	uiscipiirie:	s offered,							
	7. To	develop students' practical scientific skills whilst							
	promoting	safe laboratory practices, enabling them to become							
	conndent	technically proficient and responsible scientists,							
	8. To pror	note student appreciation of the need to work with							
	accuracy,	precision and reproducibility, with due regard for the need							
	9. To ena understar	ble students to continue to develop their range of skills and ding of modern analytical methods, beyond this course;							
	10. To ma	anage and continually improve the quality of the student							
	learning e	xperience through unit, subject and course review.							

Course Learning	 a) Students will have knowledge and understanding of:
Outcomes	 a1. subject knowledge underpinning the major disciplines in either
	the sciences or engineering;
	a2. experimental method and the development and testing of
	hypotheses;
	a3. methods used in the analysis, evaluation and critical review of
	evidence in either the sciences or engineering;
	a4. processes and procedures in sampling, data analysis and
	expressing precision, accuracy and reproducibility.
	b) Students will develop their intellectual skills such that they are able
	to:
	b1. understand the role of rational argument;
	b2. appreciate the key features of a problem and suggest possible
	means of investigation;
	b3. be aware of the significance of hypotheses, experimental data
	and rational arguments;
	b4. apply a theory, concept or subject-specific principle to a new
	context.
	c) Students will acquire and develop practical skills such that they are
	able to:
	c1. demonstrate safe practices and advise on safety procedures
	associated with a particular technique or methodology;
	c2. evaluate alternative methodologies for an investigation or
	completing a process:
	c3. organise and allocate duties, set targets and evaluate progress in
	achieving a specific technical goal;
	c4. present data in a seminar or lecture
	c5. demonstrate competence in a range of basic statistical
	procedures
	c6. demonstrate competence in the use of word-processors,
	spreadsheets and data presentation packages.
	d) Students will acquire and develop transferrable skills such that they
	are able to:
	manage and adapt their work schedule and learning strategy;
	e) d2. adopt skills and techniques to address a particular problem;
	d3. be aware of the full range of sources of information, citing
	references properly;
	d4. appreciate the need and begin to communicate ideas, arguments
	and concepts in a rational and systematic way, using a variety of
	media;
	d5. assume responsibility for their own learning and work
	independently;
	d6. manage and monitor their role within a group working to meet
	specific targets.
	C. Teaching and Learning Strategy

Laboratory skills and technical proficiency in analytical methods (a2, a3 and a4) are initiated in the first semester unit in Study & Laboratory Skills (in Scientific Principles for Engineering P/T students) and are further developed (often involving more subject-specific techniques) in the second semester stream specific units. These units concentrate on practical exercises that students have to complete to demonstrate competence.

Diagnostic tests in Study & Laboratory Skills, undertaken within the first few weeks after enrolment, allow an assessment of student ability in mathematics and English, and this unit also begins the student's induction into the scientific method (a2 and a3). A schedule of personal tutoring monitors student progress especially during the first year and is informed by student progress on the Study & Laboratory Skills unit, beginning with the outcomes of the initial diagnostic tests.

All units employ teaching methods that encourage students to consider and challenge the evidence with which they are presented. Very often the assessment schedule encourages students to question some key concept or principle. This may be formally assessed or simply part of group discussions, debates or as part of some problem-solving exercises. Problem-solving exercises typically require students to work individually or collectively by applying their understanding of current thinking or methodologies to a new context (b2, b4).

The second semester coursework is seen as an important test of the student's ability to integrate their developed scientific and numerical literacy skills with a properly devised methodology to enable them to investigate a subject area closely linked to their intended field of undergraduate study (b3, b4). The student will develop their coursework topic in consultation with the unit leader (b2, b3) and are likely to have to address methodological problems to bring the project to completion (b2).

Safe practice in laboratories begins with the first semester unit Study & Laboratory Skills and is further reinforced through the stream specific units in semester two (c1, c3). These units develop confidence in the laboratory and relate experimental activities to scientific understanding. In all units there is some methodological component, even if there is no practical element per se- coursework exercises are used in some units to assess student understanding of these techniques, often as part of a tutorial or group-work session.

A key emphasis of the Extended Degree Scheme is the development of the student's practical and analytical skills through both subject-specific and generic practicals. Students are inducted into teamwork skills in the Study & Laboratory Skills unit and part of their assessment of this unit is to produce a reflective account of their experiences in the laboratory (c1). Students are encouraged to consider alternative ways to approach specific problems, or to address specific questions (c1, c2, c3), typically through their practical work. In this way we are able to build student confidence in their technical and practical skills and reinforce the basic concepts delivered in the associated lecture programme.

The stream specific units again integrate many of these skills, and also requires the students to analyse and present their data in a standard scientific manner. The student has to organise their schedule of work in consultation with the unit leader and bring this to conclusion with a properly presented report (c3-c6).

These skills are fully mapped through the curriculum and each is met by the combination of units undertaken. A number of tasks assessed in both the Study & Laboratory Skills unit measure their progress in managing their own learning (d1, d5) and to work effectively as part of a team (d6). These all require a flexible approach to data acquisition, interpretation and presentation, not least because of the range of topics being covered (d1). Presentations and seminars are used extensively in semester 2. The second semester project work again is seen as serving an important test of many of these skills (d1-d5).

All students are allocated a personal tutor on initial enrolment to the course. The personal tutor is the point of contact for all matters relating to the student's welfare and progress whilst at London South Bank. The personal tutors are supported by year tutors, one for each year of the course. All tutees will meet their course team at the start and throughout the course.

The primary teaching contact with students, in classrooms, laboratories and workshop, is supported by print and electronic material. For their general understanding of the course, students receive a course guide and a summary of the syllabus; these are updated annually. For each module, the module leader provides a module guide. Subject tutors provide further material as appropriate, including course notes, supporting information and reprints, problem sets, assignment briefs and experiment instructions. Students have access to books in the Perry library, and may obtain copies of past exam papers.

The VLE will contain information for core and additional learning experiences.

D. Assessment

Students experience variety of assessments during their first year, including the initial review of their proficiency in maths and English as they commence the Study & Laboratory Skills unit. Knowledge is tested by unseen in-class assessments and open book written examination in the Scientific Principles unit (a1) in the first semester. Other units assess using essays or problem solving exercise. Great emphasis is placed on a series of subject specific practical experiences that have to be completed satisfactorily to pass the Study & Laboratory Skills unit and in this way we are able to check student competencies in basic practical skills. In the second semester the variety of assessment styles is continued, assessment is a combination of examination, a variety of coursework, including presentations (a3), essays, problem-solving exercises (a4) intended to aim development and preparation for undergraduate study.

E. Academic Regulations

Assessment regulations laid down in the current edition of the university's Academic Regulations for Taught Programmes apply to the course, subject to any exceptions noted in the text below and any instances where local protocols supersede University guidelines for accreditation purposes.

The most current Academic Regulations can be found here:

http://www.lsbu.ac.uk/__data/assets/pdf_file/0008/84347/academic-regulations.pdf

F. Entry Requirements

Entry requirements

- A Level DD **or**;
- BTEC National Diploma MPP or;
- Access to HE qualifications with Pass or;

- Equivalent level 3 qualifications worth 64 UCAS points
- Applicants must hold 5 GCSEs A-C including Maths and English or equivalent (reformed GCSEs grade 4 or above).

We welcome qualifications from around the world. English language qualifications for international students: IELTS score of 6.0 **or** Cambridge Proficiency or Advanced Grade C.

G. Course structure(s)

Course overview ED Engineering, full-time (120 credits)

Yr 1,		Scientific	
Sem	Applied	Principles for	Study &
1	Mathematics	Engineering (+ Labs)	Laboratory Skills
	Owner: chem-	Owner: chem-	
	pet	pet	Owner: biosci
	Credits: 20	Credits: 20	Credits: 20
Yr 1,			
Sem	Mathematicss	Engineering	Stream-specific
2	for Engineering	Science	unit
	Owner: chem-	Owner: chem-	
	pet	pet	Owner:
	Credits: 20	Credits: 20	Credits: 20

Proposed stream-specific units	Unit title
Electronics	Practical Electronics
Mech & Build Serv	Eng Des & model
	Chemistry &
Chem & Pet Eng	applications
Civil	Constructing the BE

ED Engineering, part-time (80 credits)

Yr 1, Sem 1	Applied Mathematics	Scientific Principles for Engineering (+ labs)
	Owner: chem- pet	Owner: biosci
	Credits: 20	Credits: 20

	Yr 1,								
	Sem	Mathematics for	Engineer	ng					
	2	Engineering	science						
		Our on the set	0	h					
		Owner: cnem-	Owner: c	nem-					
		pet	pet						
		Credits: 20	Credits: 2	20					
E	ED Scie	nce, full-time (120	credits)						
j	Vr 1		Scientific						
	Sem	Applied	Princinles	for	Study &				
	1	Mathematics 1	Annlied Sc	rience	Laborat	ory Skills			
	-		Applied St	lence	Laborat	Si y Sitilis			
		Owner: chem-							
		pet	Owner: bi	osci	Owner: b	piosci			
		Credits: 20	Credits: 20	า า	Credits	20			
	Vr 1		cicuits. 20	5	creates. 2	20			
	Sem	Mathematics	Chemistry	and	Biology				
	2	for Science	Annlicatio	ns	and Apr	lications			
	2	Tor Science	Applicatio	115	and App	neations			
		Owner: chem-							
		pet	Owner: bi	osci	Owner: b	piosci			
		Credits: 20	Credits: 20	רבים ר	Credits:	20			
						-			
_		Semester 1				Semester 2	· ·		
	Level S	EAB S 971	8	20		EAB S 126	igineering	20	
		Scientific Principles	for	20		Engineering Science	e	20	
		Engineering EAB_S_	_125			EAB_S_127			
		Cturdes Q. J. J. and	Q1_:11_	20		Dreation 1 Electric	-		
		EAB S 972	3K1118	20		EAB S 128	8	20 optional	
						Engineering Design	n &	20 optional	
						Modelling EAB_S	_129		
						Chemistry & Appli EAB S 973	cations	20 optional	
						Constructing the B	uilt	20 optional	
						Environment EBB_	_S_008		
		1				1		1	

Extended Degree – Part time

	Semester 1		Semester 2	
Level S	Applied Mathematics EAB_S_971	20	Mathematics for Engineering EAB_S_126	20
	Scientific Principles for Engineering EAB_S_125	20	Engineering Science EAB_S_127	20
Year 1	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
Year 2	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
	· · · · ·			
Year 3	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
Year 4	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}
Year 5	{enter module title, optional/compulsory}	{enter credit value}	{enter module title, optional/compulsory}	{enter credit value}

Placements information

None

H. Course Modules

Module Code	Module Title	Level	Semester	Credit value	Assessment
EAB_S_971	Applied Mathematics	S	1	20	
EAB_S_125	Scientific Principles for Engineering	S	1	20	
EAB_S_972	Study & Laboratory Skills	S	1	20	
EAB_S_126	Mathematics for Engineering	S	2	20	
EAB_S_127	Engineering Science	S	2	20	
EAB_S_128	Practical Electronics	S	2	20 optional	
EAB_S_129	Engineering Design & Modelling	S	2	20 optional	
EAB_S_973	Chemistry & Applications	S	2	20 optional	
EBB_S_008	Constructing the Built Environment	S	2	20 optional	

I. Timetable information

Information regarding the timetable will be available to students once the have completed enrolment. An informal review of the timetable can be obtained by communicating with the Course Director NOTE this informal timetable information may change due to requirements beyond our control.

Course related costs

J. Costs and financial support

Fees for the course do not cover any off-campus experiences such as field trips or visits to sites or other activities of interest.

Tuition fees/financial support/accommodation and living costs

- Information on tuition fees/financial support can be found by clicking on the following link http://www.lsbu.ac.uk/courses/undergraduate/fees-and-funding or
- http://www.lsbu.ac.uk/courses/postgraduate/fees-and-funding
- Information on living costs and accommodation can be found by clicking the following linkhttps://my.lsbu.ac.uk/my/portal/Student-Life-Centre/International-Students/Starting-at-LSBU/#expenses

List of Appendices

Appendix A: Curriculum Map Appendix B: Terminology

Appendix A: Curriculum Map

This map provides a design aid to help course teams identify where course outcomes are being developed, taught and assessed within the course. It also provides a checklist for quality assurance purposes and may be used in validation, accreditation and external examining processes. Making the learning outcomes explicit will also help students to monitor their own learning and development as the course progresses.

	Modules			Course outcomes																		
Level	Title	Code	A1	A2	A3	A4	B1	B2	B 3	B4	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
s	Scientific Principles for Engineering	EAB _S_9 71	DT A		DT A				D	DT	DT						D	D			D	
s	Scientific Principles for Applied Science	EAB _S_1 25	DT A		DT A				D	DT	DT						D	D			D	
s	Study and Laboratory Skills for Extended Degree	EAB _S_9 72		DT A	DT A	DT A	D	D	DT A		DT A	DT	DT A	DTA	DTA							
s	Applied Mathematics 1	EAB _S_1 26	DT A			D		DT									D	D			DT	
s	Biological and Applications	EAB _S_1 27	DT A			DT	D		D	DT							D			D	DT	
s	Chemistry and Applications	EAB _S_1 28	DT A			DT	D		D	DT							D			D	DT	
s	Mathematics for Science	EAB _S_1 29	DT A			DT		DT							DT A		D				DT	
s	Mathematics for Engineering	EAB _S_9 73	DT A			DT		DT							DT A		D				DT	
S	Engineering Science	EBB_ S_00 8	DT A			DT	D	DT		DT												

S	Constructing the Built Environment	EAB _S_9 71	DT A	DT A			DT		DT			D		
S	Practical Electronics	EAB _S_1 25	DT A	DT A	DT	DT			DT			D		
S	Engineering Design and Modelling	EAB _S_9 72	DT A	DT A		DT			DT			D		

Appendix B: Terminology

awarding body	a UK higher education provider (typically a university) with the power to award higher education qualifications such as degrees
bursary	a financial award made to students to support their studies; sometimes used interchangeably with 'scholarship'
collaborative provision	a formal arrangement between a degree-awarding body and a partner organisation, allowing for the latter to provide higher education on behalf of the former
compulsory module	a module that students are required to take
contact hours	the time allocated to direct contact between a student and a member of staff through, for example, timetabled lectures, seminars and tutorials
coursework	student work that contributes towards the final result but is not assessed by written examination
current students	students enrolled on a course who have not yet completed their studies or been awarded their qualification
delivery organisation	an organisation that delivers learning opportunities on behalf of a degree-awarding body
distance-learning course	a course of study that does not involve face-to-face contact between students and tutors
extracurricular	activities undertaken by students outside their studies
feedback (on assessment)	advice to students following their completion of a piece of assessed or examined work
formative assessment	a type of assessment designed to help students learn more effectively, to progress in their studies and to prepare for summative assessment; formative assessment does not contribute to the final mark, grade or class of degree awarded to students

higher education provider	organisations that deliver higher education
independent learning	learning that occurs outside the classroom that might include preparation for scheduled sessions, follow-up work, wider reading or practice, completion of assessment tasks, or revision
intensity of study	the time taken to complete a part-time course compared to the equivalent full-time version: for example, half-time study would equate to 0.5 intensity of study
lecture	a presentation or talk on a particular topic; in general lectures involve larger groups of students than seminars and tutorials
learning zone	a flexible student space that supports independent and social earning
material information	information students need to make an informed decision, such as about what and where to study
mode of study	different ways of studying, such as full-time, part-time, e-learning or work-based learning
modular course	a course delivered using modules
module	a self-contained, formally structured unit of study, with a coherent and explicit set of learning outcomes and assessment criteria; some providers use the word 'course' or 'course unit' to refer to individual modules
national teaching fellowship	a national award for individuals who have made an outstanding impact on student learning and the teaching profession
navigability (of websites)	the ease with which users can obtain the information they require from a website
optional module	a module or course unit that students choose to take
performance (examinations)	a type of examination used in performance- based subjects such as drama and music
professional body	an organisation that oversees the activities of a particular profession and represents the interests of its members
prospective student	those applying or considering applying for any programme, at any level and employing any mode of study, with a higher education provider

regulated course	a course that is regulated by a regulatory body
regulatory body	an organisation recognised by government as being responsible for the regulation or approval of a particular range of issues and activities
scholarship	a type of bursary that recognises academic achievement and potential, and which is sometimes used interchangeably with 'bursary'
semester	either of the parts of an academic year that is divided into two for purposes of teaching and assessment (in contrast to division into terms)
seminar	seminars generally involve smaller numbers than lectures and enable students to engage in discussion of a particular topic and/or to explore it in more detail than might be covered in a lecture
summative assessment	formal assessment of students' work, contributing to the final result
term	any of the parts of an academic year that is divided into three or more for purposes of teaching and assessment (in contrast to division into semesters)
total study time	the total time required to study a module, unit or course, including all class contact, independent learning, revision and assessment
tutorial	one-to-one or small group supervision, feedback or detailed discussion on a particular topic or project
work/study placement	a planned period of experience outside the institution (for example, in a workplace or at another higher education institution) to help students develop particular skills, knowledge or understanding as part of their course
workload	see 'total study time'
written examination	a question or set of questions relating to a particular area of study to which candidates write answers usually (but not always) under timed conditions