Section Menu

Embedded Electronic Systems Design and Development Engineer Apprenticeship - Electrical and Electronic Engineering BEng (Hons)

Overview

Engineered success

You will be studying alongside other part-time and full-time students on this popular course that provides the educational input to your Degree Apprenticeship. The degree you study is BEng (Hons) Electrical and Electronic Engineering

Accredited by the Institution of Engineering and Technology (IET), this course is designed to equip students for a wide range of careers, whether in the industry or delivering electrical and electronic services across all sectors and always to high quality standards.  Future career paths could range from developing new electronic technologies to ensuring safety on transport systems or controlling flows in process industries.

The full apprenticeship standard and assessment plan can be found on the IfA website.

Apprenticeship Employment Guidelines
Apprenticeship Evidence Pack Guidance

Why Electrical and Electronic Engineering at LSBU?

No. 1 London modern university for Electrical and Electronic Engineering, Guardian League Table 2018.
Many career options: there are few parts of our lives that don't owe at least something to the work of electrical and electronic engineers.
We work closely with the Institution of Engineering and Technology (IET) and encourage students to become members and take advantage of their facilities, which are just across the river.
We have a panel of advisers from the industry to help ensure our course coverage is up-to-date and relevant to employment needs.
Projects and case studies enable tailoring to the particular needs of your Degree Apprenticeship

No.1 for student to staff ratio amongst London modern competitors (Guardian 2019).

Accreditations

Key course information - ordered by mode
Mode Duration Start date Location
Mode
Apprenticeship
Duration
5.5 years
Start Date
September
Location
Southwark Campus

Case studies

Modules

The BEng (Honours) Electrical and Electronic Engineering degree programme is based on sound established technical foundations and offers a spread of general topics followed by increasing specialisation as you find the topics that really enthuse you.

Throughout the Degree Apprenticeship delivery model, we work directly with employers to ensure work-based projects are embedded into the course whilst ensuring those projects are relevant to the workplace and are of benefit to the business.

The course aims to produce graduates who have acquired and can use a broad base of active knowledge in electrical and electronic engineering, and the skills necessary to update, extend and deepen it for career development or further study. This includes:

  • Appropriate mathematics and electrical/electronic circuit theory.
  • Digital, analogue and particularly hybrid electronic systems, at all levels.
  • Computer hardware and software, particularly in embedded systems, at all levels.
  • The theory and applications of control engineering.
  • Professional development and engineering studies.

Year 1

  • Design and practice
    This module will cover material design activities, team work, creative problem-solving, project management, sustainable development principles, personal development planning, report writing communication, Computer-Aided Design (CAD), employability and transferable skills. It's also a work-based module for part-time students, utilising the Virtual Learning Environment (VLE) to provide supporting teaching material and assessments. Assessment method: 100% coursework.
  • Engineering principles
    This module will help you develop your understanding of essential scientific principles for the study of engineering to degree level. It's designed to be accessible to students with a range of prior science specialisation. The module comprises two blocks of study. These will introduce the principles of measurement systems and units, thermal physics and mechanical and electrical principles. Assessment methods: 40% coursework, 60% exam.
  • Engineering mathematics and modelling
    This module consolidates the mathematical skills that underpin the BEng engineering degrees. It's specifically designed to cater for the wide differences in mathematical background of 1st year students, as well as to prepare you for the Advanced Engineering Mathematics and Modelling module that you'll take in the second year. Assessment methods: 50% coursework, 50% exam.
  • Engineering computing
    This is an introductory module that will address the engineering formation as well as programming knowledge and skills. It will enable you to appreciate the role and importance of software and computers in engineering, and so provide you with the impetus to quickly become competent in their use. Assessment method: 100% coursework.
  • Introduction to electrical and electronic engineering
    This module will cover the essential material relevant to the fundamentals of both electrical and electronic engineering. Starting with basic circuit elements, Ohm’s Law and Kirchhoff’s Law, the first half of the module will introduce basic and more advanced circuit analysis techniques such as Node Voltage and Mesh Current methods, progressing onto Source Transformation techniques and the basics of semiconductors (Diodes, BJTs and Op-Amps). Then, the electrical part will cover DC responses of RC, RL and RLC circuits and finally AC sinusoidal circuit theory and power systems and three phase circuits. Assessment methods: 50% coursework, 50% exam.
  • Introduction to digital electronics
    This module aims to teach you some introductory material that an electronic engineer should know before proceeding with any digital designs. The material in this module is divided into two parts. The first part will cover the analysis and implementation of Boolean Logic circuits and their modelling using a proprietary CAD and VHDL (VHSIC Hardware Description Language). The second part of the module will focus on analysis and implementation of Sequential Logic circuits, their modelling and implementation using Programmable Logic Devices. Assessment methods: 50% coursework, 50% exam.

Year 2

  • Advanced engineering mathematics
    This module covers undergraduate advanced engineering mathematics to enable you to consider and model a variety of relevant engineering problems (e.g. electrical, mechanical, petroleum, chemical, computer, civil). Assessment methods: 50% coursework, 50% exam.
  • Circuits, signals and systems
    This module introduces methods to mathematically model circuits, signals and systems required for the engineering of electrical, electronic, telecommunication and control systems. It shows how to model and analyse complex signals with Fourier series, Fourier transforms and Laplace Transforms. The direct and indirect method of convolution is used to find the time response of systems to given inputs. First and second order LTI dynamical systems are modelled with transfer functions and their zero-state and zero-input responses predicted when the inputs are any function of time. The frequency responses of some common LTI two port filter circuits are studied. A MATLAB/SIMULINK workshop enables understanding of signal synthesis using the Fourier series, finding the frequency spectra of complex and noisy signals using FFT, and the time response and the frequency response of systems. Assessment methods: 30% coursework, 70% exam.
  • Principles of control
    This module aims to give a sound understanding of a range of topics in Control Systems Engineering. It will impart methods to model and analyse dynamical systems met in the engineering of systems such as robotics, automobiles, aircraft, automatic machinery, chemical process plant, etc. It will teach you to determine the stability of a system and to predict system responses in the time domain (transient and steady state) and in the frequency domain, as well as to handle the interconnection of many Single Input Single Output systems connected in feedback and feed forward configurations. The module will provide you with methods to specify supervisory control and data acquisition systems, and to modify the behaviour of a given system by using feedback control to improve stability, to make the system act quickly and precisely, and to reduce the effect of disturbances. Learning will be supported by a laboratory workshop that enables the study of control systems using both analysis methods and computer simulation using MATLAB and SIMULINK. Assessment methods: 30% coursework, 70% exam.
  • Team design project
    This is a skills-based module developing your understanding of the design process within engineering, including factors that need to be taken into account in identifying and meeting requirements for new products (used to mean outcome of a process and can include specifications for a tangible product, or process, or system), such as working within Regulatory, professional and Standards requirements, developing practical skills, working as part of a team, handling information, project planning and management, and report-writing and presentation skills. Assessment method: 100% coursework.
  • Electrical machines and power electronics
    This module adopts a modern approach to the study of electrical machines, 3-phase transformers and power electronic converters. The treatment emphasises the features common to all types of electrical machines and power electronic converters and then develops basic performance equations and equivalent circuits and applies them to common electrical machines and power converters in current use. The associated laboratory workshop features work on typical electrical machines and power converters. Assessment methods: 30% coursework, 70% exam.
  • Analogue and digital circuit design
    This Module teaches you how to specify and design discrete and integrated analogue and digital systems that form part of a wide range of consumer and engineering products. It covers electronic components, subsystem behaviour and system modelling of both analogue and digital electronic devices. Assessment methods: 50% coursework, 50% exam.

Year 3

  • Innovation and enterprise
    In the rapidly changing world around us, it's imperative that you're able to think dynamically to create advantage in your life. This module encourages you to question what you see and experience around you and in your prospective engineering field with an aim to enhance your creativity to discover new and better ways of doing things. It aims to equip you with methods and processes to recognise opportunities and to plan on harnessing commercially viable benefits that may exist from exploiting those opportunities in a sustainable fashion. This might be a product or service (such as consultancy or contract management). The application of project management principles will help to define the critical path of a proposed business and how the many processes involved (planning, market research, market placement, finance, operations, human resources etc.) are interlinked throughout the initial planning exercise and how they can change over time. You'll be expected to reflect on what you can contribute towards a group. Assessment method: 100% coursework.
  • Control engineering
    This module builds on the Level 5 module Principles of Control. It introduces a range of Analogue and Digital Control methods to estimate system dynamics and to improve system stability, servo tracking and regulation of system outputs against unknown disturbances. Implementation of these methods in a laboratory will closely support the theory. The application-oriented parts of the module will involve members of the teaching team from all the faculty departments and use case studies and laboratory work relating specifically to the individual disciplines. The module will be delivered in the way of 2 hours teaching, 2 hours computer workshops and 2 hours tutorials per week. Assessment methods: 30% coursework, 70% exam.
  • Project
    The Individual Major Project requires you to plan, execute, review and report upon a major piece of technical work directly related to your degree discipline. In this regard, this module provides you with the opportunity to develop a high degree of subject-specific expertise. This module differentiates from others on the course taken due to the high degree of autonomous study expected. This flexibility should be seen as an opportunity to explore new areas of interest and to acquire new and often unexpected skills. The work undertaken within the project will require you to develop your own methodology in advance of presenting solutions to the studied problem. It's therefore expected that project will include evidence and demonstration of detailed research of the subject matter, practical demonstration of understanding of the material, testing and evaluation of the practical elements, detailed reporting, discussion and conclusions of the entire project, and a high level of written presentation and grammar skills. Assessment method: 100% coursework.
  • Advanced analogue and RF electronics
    In this module, specialist linear analogue circuit techniques will be explored. The case study of a typical monolithic operational amplifier design will be used as a vehicle for further analysis of analogue linear methods of integrated circuit design. Workshops will follow the development of the material in lectures, leading to the design of a discrete op-amp on a breadboard. Further material will involve the designs of Digital to Analogue Converters (DACs) and Analogue to Digital Converters (ADCs). Assessment methods: 50% coursework, 50% exam.
  • Digital Systems Design
    This module aims to teach you material that an electronic engineer should know before proceeding with digital and microprocessor system designs. This includes topics relating to electronic component and subsystem behaviour, system modelling, microprocessor and related hardware operation and programming. General background will be provided on the technologies that are available for implementation and modelling of electronic and microprocessor-based systems, together with examples of simple applications that can be used in various engineering product designs. The material in this module will provide information on the design of digital systems built from various advanced components. The first part of the module will cover the description of the advanced arithmetic and Finite State Machines components. The second part will teach you how to develop a range of practical designs using those components and how to model it in VHDL. Assessment methods: 50% coursework, 50% exam.

Employability

The role

The role of the Embedded Electronic Systems Design and Development Engineer is to apply their knowledge of electronics and of embedded software to the design of circuits or devices that provide a useful function, that are capable of being manufactured at a competitive cost, and that are reliable and safe in use. This involves the use of the engineer’s knowledge of electronics and electronic principles, married to an expertise in the end use of the final product.

In electronics, this end use can cover a wide spectrum. Examples of industrial sectors that rely heavily on Embedded Systems Design and Development Engineers include Aerospace, Automotive, Automation and Instrumentation, Robotics, Telecommunications, Information and Computer Technology, Defence, Energy (including renewables), Transport and Consumer Electronics.

The role provides the basis of learning with potential to specialise as a Hardware Engineer, Software engineer or Systems Engineer in these sectors and can extend from design of integrated circuits through to complete systems.

Embedded Electronic Systems Design and Development Engineers will spend their careers in these industries developing the next generations of products such as smartphones, electric vehicles, communications satellites, smart grids and bringing concepts such as smart cities into reality. For others, an initial grounding in design and development will prove an excellent launch pad for a career in applications engineering, product management, marketing or general management.

The Embedded Electronic Systems Design and Development Engineer must be proficient in a wide range of skills, underpinned by academic understanding, to enable them to work across these sub-sectors and specialisms.

What to expect from your career

Electrical and Electronics Engineers can find themselves working in all kinds of environments and sectors. You might work in a production plant, workshop, office, laboratory, or on site with a client.

Engineers can be involved in a project from its inception and often find themselves involved in maintenance programmes too. Sometimes they specialise in a particular part of the process and on other occasions are involved at every stage. They tend to work in multi-disciplinary teams with engineers from other areas, as well as architects, marketers, manufacturers, technicians and more.

Typical tasks include identifying customer and user needs, designing systems and components, researching solutions and estimating costs and timescales, making prototypes, designing and conducting tests, ensuring safety standards are adhered to and modifying, improving and maintaining the product once it is finished.

On average, Chartered Engineers earn more than twice as much as the UK mean and lifetime earnings are comparable with law and medicine.

Gaining key employability skills

Studying through the apprenticeship route gives you real-world work experience, giving you a strong competitive edge on graduation. Additionally, our vocational approach to teaching will have a positive impact on your employability. As a graduate you'll have practical key skills that will make you an attractive prospect to employers. These include the ability to complete analytical investigative work, knowledge of both analogue and digital systems, the ability to create computer models for simulation, and the ability to manage projects using industry standards and specifications.

Continuing to postgraduate studies

Graduates will be able to apply for further study at postgraduate level, including for a place on our full-time or part-time MSc Electrical and Electronic Engineering.

Employability Service

By completing the apprenticeship route, you’ll have the advantage of having real-world work experience, working in a role related to your area of study. This will give you a competitive edge among other graduates when you complete your apprenticeship standard.

During your studies – and for two years after you graduate – you’ll have access to our Employability Service, who can help you develop your skills through the Careers Gym workshops and presentations. Our JobShop advisers support students and graduates with finding the right job for them.

We are University of the Year for Graduate Employment - The Times and Sunday Times Good University Guide 2018.

Placements

Staff

Dr Safia Barikzai

School/Division: Engineering / Computer Science and Informatics
Job title: Associate Professor

Safia is a business IT Pathway Leader and Informatics Placement coordinator, actively looking for placement links with potential employers.


Alessio Corso

School/Division: Engineering / Mechanical Engineering and Design
Job title: Senior Lecturer

Alessio has lectured in Higher Education since 2010 and has worked in industry as a Product Design Engineer, specialising in medical products.


Dr Sandra Dudley

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Director of Research and Enterprise

Sandra specialises in the areas of radio and optical communication system design, assistive living and sensor systems and is a member of the School Academic Standards Committee.


Prof. Mohammad Ghavami

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Professor of Telecommunications Engineering

Mohammad Ghavami is Professor of Telecommunications Engineering and the founder and leader of BiMEC research group. His research interests include UWB, smart antenna systems and biomedical applications of wireless technology.


Dr Paul Klimo

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Senior Lecturer

Paul is Course Director of the MSc in Mechatronics, Robotics and Embedded Systems.


Dr Saim Memon

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Senior Lecturer in Electrical Engineering

Dr Saim is a Senior Lecturer in Electrical Engineering. He is a Fellow of HEA and has a qualified teacher status with GTCS. He specialises in solar energy materials for sustainable low-carbon buildings and smart vacuum insulated windows.


Dr Jon Selig

School/Division: Engineering / Mechanical Engineering and Design
Job title: Associate Professor

Dr Selig's research interests are in the area of geometry and robotics.


Prof. M. Osman Tokhi

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Head of Electrical and Electronic Engineering Division

Prof. Tokhi is world authority in active control of noise and vibration and has specialist knowledge and expertise in robotics, control and systems engineering. He has authored/co-authored in excess of 750 publications, including research monographs, text books, and journal and conference research articles in these areas, and has supervised more than 55 PhD projects to successful completion.


Dr Antonio Vilches

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Senior Lecturer

Dr Antonio Vilches is an electronics engineer with a device, circuits and systems background. His expertise is in device modelling, circuit design, autonomous systems, robotics, electronic materials and devices, and human computer interaction.


Kate Viscardi

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Senior Lecturer


Dr Perry Xiao

School/Division: Engineering / Electrical and Electronic Engineering
Job title: Associate Professor; Course Director, MRes in Electrical and Electronic Engineering

Dr Xiao's research focuses on the development of novel infrared and electronic sensing technologies for skin measurements and industrial Non-Destructive Testing. He is also a director and co-founder of Biox Systems Ltd, a university spin-out company, which designs and manufactures AquaFlux (trans-dermal water loss measurements) and Epsilon (capacitive imaging).


Facilities

Teaching and learning

Length of the Apprenticeship Standard

For the Apprenticeship Standards to be achieved, employers are advised this typically takes 5 years, incorporating a 4-year day release Bachelor of Engineering Degree plus time to complete the End Point Assessment.

Approach to learning

Apprenticeship standards include both on-the-job learning (80%) and off-the-job learning (20%). During your off-the-job learning at university, you'll learn through lectures, seminars, tutorials and practical work. Taking on both group and individual projects, we assess your work through a mixture of coursework and exams, with project and laboratory work counting towards your final award. We also teach you the life skills of effective communication, problem solving, project planning and team working to help you and your employer get the most of out of your time in the workplace.

Hands-on engineering

The amount of project-based learning that you'll do on an engineering degree varies from university to university. At LSBU we offer 'design-make-test' projects throughout the degree course rather than concentrating them all into your final year. This means that you'll adapt theoretical principles to solve real-world engineering problems early in your university career in addition to the work your employer may ask you to do, giving you further exposure to work in this field. This experience of delivering innovation and solid work experience makes you attractive to employers. Innovation is at the very heart of what an engineer does on a day-to-day basis. Engineers look for practical ways of making things better, more efficient, cheaper, safer, stronger, more resilient, quicker, more integrated and more effective. Our engineering courses will teach you first-hand how to develop these crucial skills and traits.

Prepared for modern engineering practice

Many engineers will find themselves working side-by-side in multi-disciplinary project teams. One of the greatest professional assets that you can have is the ability to function well in this team set-up. That's why some of our modules are shared across all our engineering courses. These modules are about understanding the commercial priorities that shape engineering practice and problem-solving. Guest lecturers from global companies such as Rolls Royce and BP have lectured on these modules.

End point assessment

In order to successfully complete this Degree Apprenticeship, apprentices must:

  1. Achieve an IET accredited BEng (Hons) Electrical and Electronic Engineering
  2. Complete a portfolio of evidence detailing experience and competence based on all the knowledge, skills and behaviours stated in the Apprenticeship Standard and map this against the requirements for Incorporated Engineer (IEng) as stated in the Engineering Council’s UK-SPEC
  3. Complete a ‘Competence Interview’ with the Employer and appropriately qualified Individual appointed by the Assessment Organisation
  4. Present all above evidence to be reviewed by a relevant Professional Engineering Institution (PEI)

Entry requirements

  • A Level BBB or;
  • BTEC National Diploma DDM or;
  • Access to HE qualifications with 24 Distinctions and 21 Merits including 3 Distinctions in Maths and 3 Merits in Physics or;
  • Equivalent level 3 qualifications worth 128 UCAS points
  • Level 3 qualifications must include Maths or Physical Science
  • Applicants must hold 5 GCSEs A-C including Maths and English or equivalent (reformed GCSEs grade 4 or above).

How to apply

International students

International (non Home/EU) applicants should follow our international how to apply guide.

Instructions for Home/EU applicants
Mode Duration Start date Application code Application method
Mode
Apprenticeship
Duration
5.5 years
Start date
September
Application code
5265
Application method

An Apprenticeship Standard is comprised of a programme of study, an End Point Assessment and on-the-job learning. This means that in addition to meeting academic requirements, you’ll  need to be employed in a role related to your apprenticeship. The process of applying depends on whether you have an employer to sponsor (and support) you.

If you are employed and your employer has confirmed they will support your apprenticeship:

You are welcome to submit an application via our online application system. You’ll need to provide details of your employment/employer as part of the application. You’ll also need to ensure you and your employer meet the requirements – find out who can be an apprentice to see if you meet the entry requirements and employer commitments to find out more about your employer’s role.

If you are not employed:

  • You will need to find a job role related to the apprenticeship you wish to apply for, with an employer who is happy to support you. If you would like to find an employer to support your apprenticeship with LSBU, you can search which employers are currently advertising Apprenticeships via the National Apprenticeship Service website searching for ‘London South Bank University’ as keywords.
  • If there are no search results, this means there are currently no vacancies. We update our vacancies regularly, so please do check back regularly.
  • Many employers advertise their apprenticeship vacancies on their websites or via other portals. You could search for ‘find an apprenticeship’ online.
  • When you’re ready to apply, see the government's advice on how to write a winning apprenticeship application and make your application using our online application system.

Further information for apprentices

If you’re a prospective apprentice, you can find out more about who can be an apprentice on our student pages.

Further information for employers

If you’re an employer, you can find information about the employer commitments and further related information on the related pages for business.

Fees and funding

Funding

The cost of the apprenticeship is paid fully by the employer (sometimes part funded by the government) through apprenticeship levy. The apprenticeship levy is a pot of money some companies pay into, which all businesses have access to spend on the training costs of apprenticeships. Companies fall into two categories: levy-payers (who pay into the pot) and non-levy payers (who do not). You can find out more in our Levy and Funding section, specifically for employers

The apprentice does not contribute toward the cost of study.

Bands

Apprenticeship standards are all assigned a funding band by the Government – these funding bands are the maximum amount the Government will fund via the levy towards a given apprenticeship standard. There are currently 30 funding bands ranging from £1,000 to £27,000.

Incentives

Employers with less than 50 staff sending an apprentice aged 16-18 will have 100% of the training costs paid by the government. All employers who employ an apprentice aged 16-18 on the first day of teaching will receive a £1,000 incentive from the government. You can find out more in our Levy and Funding section, specifically for employers.

Cost

You can find out the funding band for an Apprenticeship Standard on the Government website. To find out how much we are charging, please get in touch with us at apprenticeships@lsbu.ac.uk

Field trips

Some modules include field with and site visits, which may be residential or outside the United Kingdom, ranging from three to five days. These are organised by the Division and students   are required to contribute towards the cost.  If there are any field trips or any course visits as part of your course, we will let you know in good time.

Case studies

Select a case study and read about practical project work, students' placement experiences, research projects, alumni career achievements and what it’s really like to study here from the student perspective.

Prepare to start

There are steps the apprentices, the employer and the University need to complete before you start your course. Take a look at the steps to be completed in the New Students: Apprentices section. Employers may also like to look at our steps to offering an apprenticeship.

 
Top of page
Contact information

Course Enquiries - UK

Tel: 0800 923 8888

Get in touch

Course Enquiries - EU/International

Tel: +44 (0) 20 7815 6189

Get in touch
 
Top of page