Prof. David Phoenix OBE

Prof. David Phoenix


  • Telephone:
    020 7815 6018
  • Professional service:

Professor David Andrew Phoenix, OBE, DL, DUniv, AcSS, DSc is the Vice Chancellor of London South Bank University, Chair of millionPlus, and a member of the HEFCE Strategic Committee for Teaching Quality and the Student Experience. He was elected to Fellowship of the Royal College of Physicians (Edinburgh) for his contribution to medical research and education and recognized as an Academician by the Academy of Social Sciences for his work in areas linked to educational policy. He currently represents Universities UK on the UK Performance Indicator Steering Group.

In 2015 the Prime Minister appointed him as a trustee of the Science Museum Group. He is also a trustee of Universities UK and a Director of the National Centre for Universities and Business.

With over 250 publications, Prof. Phoenix remains a visiting professor at Kings College London and Sichuan University, China, as well as a Fellow of the Royal Society of Chemistry, The Society of Biology, The Institute of Mathematics and Its Applications, and the Royal Society of Medicine. Through these later bodies he has engaged in a range of discussions regarding the skills agenda, especially related to employer requirements. In 2010 he was made an Officer of the Most Excellent Order of the British Empire for services to Science and Higher Education, and appointed as a Deputy Lieutenant of Greater London in 2015.

Prof. Phoenix has worked extensively overseas, developing and leading on an overseas campus in Cyprus and a research institute in China. He was awarded an individual Excellence award by China’s Vice Premier in 2014 and was admitted to Order of Friendship (China) in 2016 for outstanding contribution to the country’s economic and social development.

Dave's research is multidisciplinary and draws on a range of specialisms including, biology, chemistry, engineering, physics and computational modelling to help develop understanding of the structure function relationships used by amphiphilic bioactive molecules. The term ‘‘peptide-amphiphile’’ can be used to describe amphiphilic peptides consisting only of amino acids that show segregation of charged and uncharged components within the primary or secondary structure. Alternatively they may be composed of hydrophilic peptides linked to hydrophobic alkyl chains or lipids, and peptide based copolymers. Such molecules are of significant biological importance due to the range of asymmetric boundaries that occur in nature such as those found at a membrane lipid interface. Amphiphilic protein sequences can be involved in protein targeting, membrane protein assembly as well as membrane fusion and lysis. In addition to amphiphilic peptides possessing key biological functions amphiphiles are becoming of increasing interest in the creation of new biomaterials. Amphiphiles can self-assemble into a variety of different structures such as micelles, vesicles, monolayers, bilayers, nanofibres, nanotapes, ribbons, and twisted ribbons, to minimise unfavorable interactions with their surroundings. A key aspect of his work involves the development of bioactive peptides and new biomaterials with biomedical application.

  • Principal Fellow, Higher Education Academy
  • Fellow and Chartered Chemist, Royal Society Chemistry,
  • Fellow and chartered biologist, Royal Society  of Biology
  • Fellow, Royal Society Medicine
  • Fellow and chartered mathematician, Institute of Mathematics and its Applications, (FIMA)
  • Prime Ministerial appointment as a Trustee Science Museum Group, Chair of Audit Committee and a member of the Museum of Science and Industry Advisory Board
  • Trustee, British University in Egypt
  • Director, National Centre for Universities and Business
  • Chair of Millionplus – the association of modern universities
  • Member of the Minister for Universities and Science Brexit advisory Forum
  • Inaugural Chair South Bank Academies
Top of page
Top of page